
Dynamic Reconfiguration of GCM components

A.Basso, A. Bolotov, V. Getov
{A.Basso,A.Bolotov,A.Getov}@wmin.ac.uk

University of Westminster, UK

L. Henrio
{Ludovic.Henrio}@sophia.inria.fr

INRIA, Sophia Antipolis, France

CoreGRID Technical Report
Number TR-0173
September 19, 2008

Institute on Programming Model

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

Dynamic Reconfiguration of GCM components

A.Basso, A. Bolotov, V. Getov
{A.Basso,A.Bolotov,A.Getov}@wmin.ac.uk

University of Westminster, UK

L. Henrio
{Ludovic.Henrio}@sophia.inria.fr

INRIA, Sophia Antipolis, France

CoreGRID TR-0173

September 19, 2008

Abstract

We detail in this report past research and current/future developments in formal specification of Grid component
systems by temporal logic and consequent resolution technique, for an automated dynamic reconfiguration of com-
ponents. It is analysed the specification procedure of GCM (Grid Component Model) components and infrastructure
in respect to their state behaviour, and the verification process in a dynamic and reconfigurable distributed system.
Furthermore it is demonstrated how an automata based methodis used to achieve the specification, as well as how the
enrichment of the temporal specification language of Computation Tree Logic CTL with the ability to capture norms,
allows to formally define the concept of reconfiguration.

1 Introduction

There are two approaches to building long-lived and flexibleGrid systems: exhaustive and generic. The former
approach provides rich systems satisfying every service request from applications but consequently its implementation
suffers from very high complexity. In the latter approach, we represent only the basic set of services (minimal and
essential) and thus overcome the complexity of the exhaustive approach. However, to achieve the full functionality of
the system, we must make this lightweight core platform reconfigurable and expandable. One of the possible solutions
here is to identify and describe the basic set of features of the component model and to consider any other functions
as pluggable components [31] which can be brought on-line whenever necessary [24].

In building generic Grid systems, we can take advantage of a basic representation of the system and build the
required component parts on top as required. To take full advantage of this method, we have to ensure an easy
and secure way to expand and reconfigure the platform. The overall complexity of this type of system is directly
proportional to the type and amount of services implemented. Component models such as Fractal and the more specific
Grid Component Model (GCM) allow for modular design of applications which can be easily reused and combined,
ensuring greater reliability. This is important in distributed systems where asynchronous components must be taken
into consideration, especially when the need for a dynamic reconfiguration is present. The GCM specification defines
the basic (non-functional) controls to be implemented, anda number of constraints on the interplay between functional
and non-functional operations. In these models, components interact together by being bound through interfaces.

Establishing the theoretical foundations of the generic processes involved in designing and functioning of such
Grid systems is highly important. A significant part of this research lies in the area of formal specification of a
component model and its infrastructure in relation to the dynamic state changes of such model, and its verification.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1

For the specification of this behaviour we can use a rich temporal framework [21] with subsequent application of a
verification technique. Given a formal specification of a distributed system there are two major approaches to formal
verification of this specification: algorithmic and deductive [25]. While the algorithmic approach is fully automated,
as in the case of model checking, its application, in general, is restricted to finite state systems. On the other hand,
methods of the second, deductive approach, can handle arbitrary systems providing uniform proofs. To the best of
our knowledge, the only technique currently used in the verification of distributed hierarchical components is model
checking.

Note that a model checking technique, which verifies the properties of the components against the specification,
has already been tested in various circumstances, one of which is described in [1]. While model checking [16] is a
powerful and well established technique it has a particulardrawback in its explorative nature, and makes considering
the environment (especially during dynamic reconfiguration) impractical. Deductive methods on the other hand, can
be applied on a large infrastructure-bound system and furthermore, can be integrated into reconfiguration scenarios.
The technique we explored cannot replace model checking, asit is not intended for specification of behaviour of single
components or static composition of components, on the other hand, it can complement model checking by assuming
this part of the verification is already been done, and focusing on the dynamic state changes of a running Grid system
and its current infrastructure.

In our approach the components are modelled in a specific branching-time temporal logic, or SNFCTL

(Simplified Normal Form for Computation Tree Logic) [13], and then the temporal resolution is applied as a resolution
tool. SNFCTL initially developed for CTL has been shown to be able to express simple fairness constraints and their
Boolean combinations [7, 8]. Furthermore, a clausal resolution over the set of SNFCTL clauses has been defined [6, 7]
and recently the search strategies for this method were presented in [9]. As a specific deductive method we have
applied a temporal resolution method to a simple component model [3]. In [2] we proposed a framework for the
specification of a reconfiguration process by deontic extension of the underlying language. However, the complexity
of this approach turned out to be very high and one of the possible ways of its reduction would be to incorporate the
developments in line with [20].

2 Background

2.1 Component Model

Fractal is a modular and extensible component model. The Grid Component model (GCM) is an extention of Fractal
built to accommodate requirements in distributed systems,in particular the ones developed by the CoreGRID project.
The GCM specification defines a set of notions characterisingthis model, an API (Application Program Interface),
and an ADL (Architecture Description Language).

Components are characterised by theircontentand themembrane. The content of a component can be hidden (in
which case it is simply a black box) or it can be constituted bya system of some other components (sub-components).
In the former case we would call a componentprimitive while the latter case represents acompositecomponent. The
membrane, or controller, controls the component.Controllersaddress non-functional aspects of the component.

GCM is a multi-level specifications. Depending on their conformance level, GCM components can feature intro-
spection and/or configuration. Thecontrol interfaces are used in the GCM model to allow configuration (reconfigu-
ration), and are defined asnon functional. On the other hand, the functional interfaces of a componentare associated
with its functionality. Afunctionalinterface can provide the required functionality and we call it the serverinterface.
Alternatively, aclient interface requires some other functionality.

Component interfaces are linked together bybindings. For this research, we will only consider primitive bindings
that are simple bindings transmitting invocations from theclient interface to the connected server interface.

There are few controllers that have been already defined in GCM (but others may be user-defined depending on
the needs of the model); the most important are:

• Theattribute controlleris used to configure a property within a component, when thereis no need to take into
consideration bindings of interfaces.

• Thebinding controlleris used when the attribute controller is not applicable and actual binding/unbinding of
interfaces is required.

CoreGRID TR-0173 2

• Thecontent controllercan be used to retrieve the representation of thesub componentsand add or remove them
accordingly; if a sub component issharedby one or more other components, the scenario must be defined so
that also these other components are taken into consideration.

• The life cycle controllerallows to start and stop a component, it is used for dynamic reconfiguration so that all
other controls can be applied safely to the component while the component is not in execution.

2.2 Architecture

In the architecture developed, the formal specification is achieved by the analysis of three main parts: the primitive
components, the composition of the former into composite components through the Architecture Description Language
(ADL) file and the infrastructure (see Figure 1). The first twoare combined to deduce the state behaviour of the
component system - a high-level behaviour distinct from theone of a single component, which we assume to be
already formally verified through other techniques being currently researched; the specification is partially given as
an input by the user in the case of primitive components, and partially automatically extrapolated using different
sources, such as source code and the ADL file. The infrastructure is specified mainly according to the user’s need,
and following well defined and accepted constrains such as those for safety, fairness, etc. [27] and in relation to the
resources required and services provided. The formal specification derived through this process is a fusion of deontic
and computation tree temporal logic, extended from the previous developments in [3], which is a suitable input format
for our deductive reasoning tool. The properties to be specified and verified by this techniques are the ones which are
not possible to be considered when a system is specified in a static way, this includes but is not limited to: presence of
resources and services, availability of distributed components, etc.

Figure 1: Architecture

State behaviour specification - an exampleIn the classical approach to component behaviour specification,
the term ”behaviour” is referred to the inner component’s functionality - if the component is supposed to calculate
the factorial, is it doing it correctly? When we consider thestate behaviour of a component instead, we are taking
into consideration a different matter; we are looking for those requirements that will make the component ”behave”
correctly with the rest of the system. When thinking about a small example, this can be trivial - the parser can check
if all the libraries required by the component are present tocalculate the factorial - but what happens when we talk
about a distributed system, where changes might be needed tobe done at runtime? What if we require to replace a
component but the component we want to replace depends on a resource which is not available? We have taken into
consideration these types of situations while developing aspecification procedure. We take into consideration the life
cycle of a component and define its states in a formal way so that they can be used in the system specification. We
consider past developments within the GCM and other state aware Grid systems [30] to define a set of states to be
generated and could be monitored by specific software [17]. This lifecycle is restricted, in fact it only models the
deployment state of the system (and consequentially its states transitions throughout the life of the system), not its

CoreGRID TR-0173 3

operational characteristics. For example, once a component is in running state, it is considered to be available. On
the other hand, the service may fail for other unforeseen circumstances (hence the need for a component monitoring
system during runtime which will report a need for changes into the state behaviour specification). We can represent
these lifecycle states as in Figure 2.

Figure 2: Component’s Lifecycle States

In the GCM specification, the life-cycle controller is extended allowing to separate partially the life-cycle states
of the controller and of the content. Generally, when a component created, it is firstly instantiated (deployment stage)
and any operations (such as dependencies checks) are processed. In this state is assumed that the resource monitoring
process will detect the resources required by the componentand their presence. At this point the states changes
initialise and destroy could be reached. The next state (assuming the component monitoring process has not detected a
failure state) is the started state. This state is indicative for the services required/provided by the component/resources
that are being deployed and available for use. This state does not refer to the internal operations of the component, but
only the resources being used. Furthermore it should be clear that if a component would be reported at any state to
have reached the failure state, the component itself may still be available to the system (although its required resources
would become available), on the other hand the services provided by the component would be terminated. This applies
to the terminated state as well. Due to the hierarchical composition of components, we can plot recursively resources
required and services provided in the behavioural states system. When a component is functionally stopped (which
corresponds to the stopped state of the Fractal specification), invocation on controller interfaces are enabled and the
content of the component can be reconfigured. After the reconfiguration has taken place, the Fractal specification
allows for the component to be restarted by using the start call on the component again.

Automata Based ModelIn building the specification protocol, we plan to follow well known automata construc-
tions. We take a simple finite state automaton on finite strings, for the components specification, and a more complex
finite state automata on infinite trees to define the environment. The automata at component level are used for the
creation of labels defining the various states in which the considered component is, and are then fed upon request on
to the various states of the automata at environment level, as shown in Figure 3.

In the construction of this tree automaton, every state is labelled according to state of components (passed over
from the component level automaton) and resources. In this case the transition function is not only related to the state
transition of components, but is also tightly bound to the deontic logic accessibility relation. Here we expect that we
would be able to specify the automaton in the normal form for CTL, SNFCTL, developed in [13]. Although we do not
have a rigorous proof of this, we can anticipate that the situation here would be similar to the one in the linear-time
case. Namely, in [12], it was shown that a Buchi word automaton can be represented in terms of SNFPLTL, a normal

CoreGRID TR-0173 4

Figure 3: Automata Based Model

form for PLTL. Similarly, we can represent a Buchi tree automaton in terms of SNFCTL. More precisely, we use
SNFCTLto specify the tree automaton and then extend this specification to a deontic temporal specification [2] and
apply a resolution based verification technique as a verification procedure. As detailed in section 2.5, we assume that
the models of CTL type logic are infinite trees, i.e. every path through such tree is an infinite path, allowing us to have
these closure properties (suffix, limit and fusion closures) that make these models so called R-generable structures
[21].

System/Infrastructure Behaviour. To extrapolate the state behaviour, we need information on the architecture
and hierarchical components structure, its dynamic flow on information, the possible requirements and external re-
quests etc. It is possible to extrapolate interface and bindings information from the XML based ADL file. This gives
us an idea of the flow of the system; the user might need to refinethis process, for example to keep significant pa-
rameters only or add relevant others. On the other hand, other component’s requirements must be grabbed directly
from the component’s definitions. Since one of the GridComp IDE’s functionality will include a GCM parser to build
component models, we can reuse some of the data it provides toblueprint these requirements, leaving the task to the
programmer to fill in the gaps. The infrastructure can represent a general purpose environment based on some common
grounds, or a specific one, defined by the programmer. In the former case, infrastructure must, of course, leave room
for further expansion and adaptation depending on the programmer’s need.

Deontic extension of specification.We develop a specification language based on the fusion of Computation Tree
Logic (CTL) and deontic logic to represent the properties ofthe behaviour protocol. The requirements of the protocol
are understood as norms and specified in terms of deontic modalities ”obligations” and ”permission”. The introduction
of this deontic dimension not only increases the expressiveness of the system capturing the normative nature of the
specification but also allows us to approach the reconfiguration problem in a novel way.

Complexity. We have mentioned that while our initial papers on the resolution based verification of the component
model model specifications [3] opened a theoretical prospect of these developments, the complexity of the resolution
based verification has raised some concerns with the feasibility of applying this method to a full scale component
model. Therefore, there has been a need for complexity reduction. Unlike model checking, where the complexity lies
in the model generation, deductive reasoning ‘suffers’ in the verification process. One of the ways to overcome the
problem would be to develop a tractable sub-classes of propositional linear temporal logic, based on the use of XOR
fragments of the logic following the linear time resolutionframework in [20]. It should be also considered that the
initial specification would not be as complex as in the most common uses of model checking, since the component’s
behaviour to be specified is only bound to the dynamic states:we do not consider the component’s behaviour in the

CoreGRID TR-0173 5

classical sense (the functionality).

2.3 Reconfiguration

The reconfiguration aspect is an essential one in this research and we argue that our approach brings some impor-
tant novelty comparing with other similar formal approaches to specification and verification. We need therefore to
introduce this notion and give some definitions and descriptions on how we tackle the problem.

We refer to reconfiguration as to the process through which a system halts operations under its current source spec-
ification and begins operations under a different target specification [29]. Due to the underlying structure of generic
Grid systems, and the particular nature of the reconfiguration process being developed, we consider the dynamic re-
configuration process as an unforeseen action at development time (known as ad-hoc reconfiguration [4]), therefore we
will not be considering programmed reconfiguration. An insightful example could be the replacement of a software
component by the user, or an automated healing process activated by the system itself. In the case that the system is not
yet deployed, the verification of the overall system behaviour (inconsistency check) can be triggered manually at any
step of the development process; the verification tool (VT) might simply detect inconsistencies and trigger the healing
process or complete the verification and return to the user. When the system is deployed, the verification tool will run
continuously and the system will report back the current states for model mapping; if a reconfiguration procedure is
requested or inconsistency detected, the healing process is triggered. The inner behaviour of single components and
their static composition is assumed to be pre-specified and verified using other techniques, such as model checking.
We do not claim by any mean to be able to dynamically run a verification on the behaviour of each and every single
component; we aim at a higher level of behaviour, the one of the overall Grid system, against the Grid infrastructure.

In both static and dynamic reconfiguration, there are three possible responses to a request for reconfiguration:

1. Full rejection. The VT rejects the reconfiguration request until the job is finished or there is a suitable change
in the infrastructure. In this case, the VT might return to the user a suggestion on how the reconfiguration could
be acceptable by suggesting a set of states which are accessible from the current state, in other words, the VT
gives an ‘if’ condition which should be available to the system to accept the reconfiguration request.

2. Full acceptance.The VT accepts the request for reconfiguration without any constrains. This process assumes
that the environment will not change in a affecting way during the required period for reconfiguration.

3. Partial acceptance.The VT accepts the request for reconfiguration but gives specific state-time constrains. In
this case, need for automated reconfiguration is essential;the VT may also suggest a possible set of states which
would allow for a broader acceptance (much like in the first case).

4. Partial rejection.Similarly to partial acceptance, the VT rejects the requestfor reconfiguration with some time
constraints.

All of the above responses to requests for reconfiguration are intended for automated reconfiguration only - this is
the only way to assure that the process takes place at acceptable state-time and infrastructure compliance time.

The dynamic reconfiguration process works in a circular way [Figure 4] and it is divided into two majors steps
(detailed below) before the model update can take place. Theapproach here is to specify general invariants for the
infrastructure and to accept any change to the system, as long as these invariants hold. We assume that the infrastructure
has some pre-definedset of normswhich define the constraints for the system, in order to ensure system safety, mission
success, or other crucial system properties which are critical especially in distributed systems.

Model update request.A model update request can be triggered by a user’s intentionto re-configure the system,
or by an inconsistency detection from the Verification Tool.It is reflected in the model as a change to the behaviour
specification and it is constrained by the infrastructure restrictions. For example, the user might want to upgrade a
component, but these changes must conform to the limitations set for such component. If the changes themselves are
safe for the system, the Verification Tool passes to the next step.

Model mapping. For the verification process to understand its current statein the temporal tree, there is a need
for a constant ‘model mapping’; in other words, a process running in the background needs to be present in order to
map the structure of the system into a model tree. This can be easily implemented alongside with a current monitoring
system which will keep track of this mapping indicating which parts of the system are currently in which states in
the model tree [5]. This process is essential to ensure that no ‘past’ states are misused by the VT during the healing
process.

CoreGRID TR-0173 6

Figure 4: reconfiguration Cycle

2.4 Model Update (Healing process)

Model update is the core of the reconfiguration process. We refer to model update as to the process by which the state
model, generated from the specification, is changed or partially replaced in order to respond to the update request.
Unlike model revision, in which the description is simply corrected but the overall system remains unchanged, using
model update assumes fundamental changes to the system by adding, deleting and replacing states in the model
behaviour [23]. In this process, different types of changesare dealt with in a similar fashion, independently from the
origin of the update (external user input or self healing process). To map the states set within where the model update
can be applied, we apply the rules that formally define reconfiguration in section§2.3; assuming that specified norms
and invariants do not contradict the new specification for the selected states set, the new set of states (and therefore
the updated specification) is taken as the new model to be usedand the updated component can be replaced by the
software through standard unbinding etc.

Healing process.This process is triggered when the new set of updated states does not conform with the previous
or following states. In other words, this process is used to search for a feasible modification to the rejected set of
states, within the state model used. Formally, we search thetree model for a set of states which conform with the
norms and invariants, and is applicable for this set of states. Candidate states for such an update in relation for some
statesi, do not have to be in an ‘achievable’ (from the tree order point of view) future ofsi, i.e. do not have to
belong to a subtree with the rootsi, but only have to be ‘accessible’ from the current state according to the norms
set (‘deontically’ accessible) by the infrastructure. Thecandidate set of states (or a more readable parsed version) is
reported to the user/developer as a possible solution to theinconsistency detected. (healing is also triggered if there
was no supplied update as in the case of inconsistency detection). This will open a prospect of re-configuring a model
by making this ‘deontically’ accessible state also accessible in terms of the tree order. We are planning to incorporate
here the ideas of a model update developed, in particular, in[18].

2.5 Temporal Deontic Specification

As the deontic extension of CTL we consider the logic which isdescribed in [26]. We assume that the specification
of a component model now is either written directly in this new framework of TDS or is initially given in the deontic
extension of the logic ECTL+ called ECTL+D and then is converted into the TDS. Since the structure of TDSis similar
to the SNFCTL we are able to subsequently apply the resolution based verification technique which must be also
extended to cope with the normative dimension.

2.5.1 The logicECTL+
D

In the language of ECTL+D, where formulae are built from the set,Prop, of atomic propositionsp, q, r, . . . , p1, q1, r1, . . . ,
pn, qn, rn, . . ., we use the following symbols: classical operators:¬,∧,⇒,∨; temporal operators: – ‘always in the

CoreGRID TR-0173 7

Figure 5: Model Update

future’; ♦ – ‘at sometime in the future’;g– ‘at the next moment in time’;U – ‘until’; W – ‘unless’; and path
quantifiers:A – ‘for any future path;E – ‘for some future path.

For the deontic part we assume a setAg = {a, b, c . . .} of agents (processes), which we associate with deontic
modalitiesOa(ϕ) read as ‘ϕ is obligatory for an agenta’ andPa(ϕ) read as ‘ϕ is permitted for an agenta’.

In the syntax of ECTL+D we distinguishstate(S) andpath (P) formulae, such thatS are well formed formulae.
These classes of formulae are inductively defined below (whereC is a formula of classical propositional logic)

S ::= C|S ∧ S|S ∨ S|S ⇒ S|¬S|AP |EP |PaS|OaS
P ::= P ∧ P |P ∨ P |P ⇒ P |¬P | S|♦S| gS|S U S|S W S| ♦S|♦ S
Where path formulae are those that are evaluated along paths, and state formulae are those that are evaluated at the
states of a tree.

Definition 1 (literal, modal literal) A literal is eitherp, or ¬p wherep is a proposition. Amodal literalis eitherOil,
¬Oil, P il, ¬P il wherel is a literal andi ∈ Ag.

ECTL+
D Semantics.We first introduce the notation of tree structures, the underlying structures of time assumed

for branching-time logic.

Definition 2 A treeis a pair (S, R), whereS is a set of states andR ⊆ S × S is a relation between states ofS such
thats0 ∈ S is a unique root node, i.e. there is no statesi ∈ S such thatR(si, s0); for everysi ∈ S there existssj ∈ S
such thatR(si, sj); for everysi, sj , sk ∈ S, if R(si, sk) andR(sj , sk) thensi = sj .

A path, χsi
∈ P is a sequence of statessi, si+1, si+2 . . . such that for allj ≥ i, (sj , sj+1) ∈ R. Letχ be the set of

all paths ofM. A pathχs0
∈ χ starting at the initial state is called afullpath. LetX be a family of all fullpaths ofM.

Given a pathχsi
and a statesj ∈ χsi

, (i < j) we term a finite subsequence[si, sj] = si, si+1, . . . , sj of χsi
a prefix

of a pathχsi
and an infinite sub-sequencesj, sj+1, sj+2 . . . of χsi

a suffixof a pathχsi
abbreviatedSuf(χsi

, sj).
Following [21], without loss of generality, we assume that underlying tree models are of at most countable branch-

ing.

Definition 3 (Total countableω-tree) A countableω-tree, τω , is a tree(S, R) with the family of all fullpaths,X ,
which satisfies the following conditions: each fullpath is isomorphic to natural numbers; every statesm ∈ S has
a countable number of successors;X is R-generable[21], i.e. for every statesm ∈ S, there existsχn ∈ X such
that sm ∈ χn, and for every sequenceχn = s0, s1, s2 . . . the following is true:χn ∈ X if, and only if, for every
m (1 ≤ m), R(sm, sm+1).

Since inω trees fullpaths are isomorphic to natural numbers, in the rest of the paper we will abbreviate the relation
R as≤.

Next, for the interpretation of deontic operators, we introduce a binary agent accessibility relation.

CoreGRID TR-0173 8

Definition 4 (Deontic Accessibility Relation) Given a total countable treeτω = (S,≤), a binary agent accessibility
relationDi ⊆ S × S, for each agenti ∈ Ag, satisfies the following properties: it isserial(for anyk ∈ S, there exists
l ∈ S such thatDi(k, l)), transitive(for anyk, l, m ∈ S, if Di(k, l) andDi(l, m) thenDi(k, m)), andEuclidian(for
anyk, l, m ∈ S, if Di(k, l) andDi(k, m) thenDi(l, m)).

Let (S,≤) be a total countableω-tree with a roots0 defined as in Def 3,X be a set of all fullpaths,L : S ×
Prop −→ {true , false} be an interpretation function mapping atomic propositional symbols to truth values at each
state, and everyRi ⊆ S × S (i ∈ 1, . . . , n) be an agent accessibility relation defined as in Def 4. Now a model
structure for interpretation of ECTL+D formulae isM = 〈S,≤, s0, X, L, D1, . . . , Dn〉.

Reminding that since the underlying tree structures areR-generable, they are suffix, fusion and limit closed [21],
in Figure 6 we define a relation ‘|=’, which evaluates well-formed ECTL+D formulae at a statesm in a modelM.

〈M, sm〉 |= p iff p ∈ L(sm), for p ∈ Prop
〈M, sm〉 |= AB iff for each χsm

, 〈M, χsm
〉 |= B

〈M, sm〉 |= EB iff there exists χsm
such that

〈M, χsm
〉 |= B

〈M, χsm
〉 |= A iff 〈M, sm〉 |= A, for state formula A

〈M, χsm
〉 |= B iff for each sn ∈ χsm

, if m ≤ n then

〈M, Suf(χsm
, sn)〉 |= B

〈M, χsm
〉 |= gB iff 〈M, Suf(χsm

, sm+1)〉 |= B
〈M, χsm

〉 |= AU B iff there exists sn ∈ χsm
such that m ≤ n

and 〈M, Suf(χsm
, sn)〉 |= B

and for each sk ∈ χsm
, if m ≤ k < n

then 〈M, Suf(χsm
, sk)〉 |= A

〈M, χsm
〉 |= AW B iff 〈M, χsm

〉 |= A or 〈M, χsm
〉 |= AU B

〈M, sm〉 |= OaB iff for each sn ∈ S, if Da(m, n) then

〈M, sn〉 |= B
〈M, sm〉 |= PaB iff there exists sn ∈ S, such that Da(m, n)

and 〈M, sn〉 |= B

Figure 6: ECTL+D semantics

Definition 5 (Satisfiability) A well-formedECTL+
D formula,B, is satisfiable if, and only if, there exists a modelM

such that〈M, s0〉 |= B.

Definition 6 (Validity) A well-formedECTL+
D formula, B, is valid if, and only if, it is satisfied in every possible

model.

2.5.2 Temporal Deontic Specification

In this section we introduce the core concept of Temporal Deontic Specification (TDS).

Definition 7 (Temporal Deontic Specification - TDS)TDS is a tuple〈In, St, Ev, N, Lit〉 whereIn is the set of
initial constraints,St is the set of step constraints,Ev is the set of eventuality constraints,N is a set of normative
expressions, andLit is the set of literal constraints, i.e. formulae that are globally true. The structure of these
constraints calledclauses, is defined below where eachαi, βm, γ or le is a literal, true or false, de is either a literal
or a modal literal involving theO or P operators,〈ind〉 ∈ IND is some index, and the clauses are supposed to be in
the scope of theA modality.

start ⇒
∨k

i=1 βi (In)
∧k

i=1 αi ⇒ A g[
∨n

m=1 βm] (St A)
∧k

i=1 αi ⇒ E g[
∨n

m=1 βm]〈ind〉 (St E)

∧k

i=1 αi ⇒ A♦γ (Ev A)
∧k

i=1 αi ⇒ E♦γ〈LC(ind)〉 (Ev E)

true ⇒
∨n

e=1 de (D)

true ⇒
∨n

e=1 le (Lit)

CoreGRID TR-0173 9

In the rest of the paper, similar to our previous presentations, to simplify reading, we will omit writing the common
for all TDS clauses prefixA .

2.5.3 Rules towards TDS

We suppose that the given specification is either directly written in terms of TDS or in the language of ECTL+
D. In the

latter case the formulae of the specification must be transformed into the desired form of TDS. Since ECTL+
D extends

ECTL+ by allowing deontic constraints and similarly since TDS is adeontic extension of SNFCTL, a normal form for
the logic ECTL+, [8] we simply enrich the transformation procedure of [8] bythe corresponding rules dealing with
the deontic operations. In fact, due to the fact that there isno interaction between temporal and deontic constraints,
the only rule that is needed for the transformation of the formulae with deontic constraints is the renaming rule,
which would work similar to [19], i.e. which would allow us torename an embedded deontic subformula by a new
proposition. Thus, to assist the reader we will only review those rules of the transformation procedure that are used in
our example in section§2.5.4 and section§2.6.2.

Renaming
GivenP ⇒ Q(F) we deriveP ⇒ Q(F/x) andx ⇒ F , whereQ(F) is a formula with the designated subformula

F andQ(F/x) means a result of replacingF by a new proposition symbolx in Q.

Temporising
Give a purely classical expressionA ⇒ B we transform it intostart ⇒ ¬A ∨ B andtrue ⇒ A g(¬A ∨ B).

In particular, we will apply the following case of this rule:from true ⇒ A ∨ B derivestart ⇒ ¬A ∨ B and
true ⇒ A g(¬A ∨ B).

Removal of AW
Recall that the formula of the typeA(AW B) or E(AW B) can appear as a result of the application of Temporal

Resolution rules. Hence, we would have to transform a resolvent of this type into the desired form. This is first of
all achieved by the application of theW removal rule. In particular, we would apply theA W removal rule: given
P ⇒ A(AW B) deriveP ⇒ B ∨ (A ∧ x) andx ⇒ A g(B ∨ (A ∧ x)) [6].

2.5.4 TDS Example

Now, let us consider an example specification in which we essentially use a normative framework for reconfiguration,
and where a model is requested to be updated.

Letr ands represent two components that can be bound to the system. Further letq be a new composite component,
a composition ofr ands. Next, letr ands be such thatr always requires its counterpart component,s not to be active
in any of the next states ands requiresr not to be bound in some possible development of the system, i.e. at the
successor state in the direction〈f〉. Additionally, let us assume that the specification of the system requires that this
new component,q, should not be bound at the next state. This is represented bythe following formula of ECTL+D:

(†) A (r ⇒ (A gs ∧ Oi¬q)) ∧ A (s ⇒ (E gr ∧ Oi¬q))

Finally, let the system receive a request for the permissionto eventually bindq whichever way it evolves:

(‡) start ⇒ A♦Piq

Our specification technique require to transform formulae(†) and(‡) to the structure required by TDS. This translation,
as mentioned above, when it concerns with the temporal part,is described in our previous work [3, 8] and if it involves
deontic constraints then we additionally use standard classical transformations towards normal forms and the renaming
rule. To simplify the reading of the paper, we have already presented the rules involved into our examples below.

In the table below we summarise these conditions of the component system and their representations in the lan-
guage of TDS (note thatw is a new (auxiliary) proposition introduced to achieve the required form of TDS clauses).
Recall that each clause of TDS is in the scope of theA and we will omit this common prefix for the TDS clauses in
the rest of the paper to simplify the reading. Also, recall that eachE step clause would have to be labelled by a specific
labelf while everyE sometime clause by some indexLC(ind) [6].

CoreGRID TR-0173 10

Conditions of the System Constraints of TDS
Dependency between counterpart componentsr ⇒ A gs

true ⇒ ¬r ∨ Oi¬q
s ⇒ E gr
true ⇒ ¬s ∨ Oi¬q

A request for the permission to eventually bindq start ⇒ x
x ⇒ A♦w
true ⇒ ¬w ∨ Piq

2.6 Resolution based deduction verification of TDS

2.6.1 Resolution Rules

We first update the set of resolution rules developed for SNFCTL [13] by new resolution rules capturing the deontic
constraints. However, due to the lack of space, here we present only those rules that will be involved into an example
of the refutation. Recall that among the set of the TDS clauses are initial clauses, step clauses, eventuality formulae,
and deontic clauses. In order to achieve refutation we applythree types of resolution rules: Step Resolution (classical
resolution) (SRES), Temporal Resolution (TRES), and deontic resolution (DRES). SRES and TRES rules are described
in [6].

Two step resolution rules that will be used in our example aregiven below.

SRES1
start ⇒ l ∨ B
start ⇒ l ∨ C
start ⇒ B ∨ C

SRES2
A ⇒ A g(l ∨ D)
B ⇒ A g(¬l ∨ E)
A ∧ B ⇒ A g(D ∨ E)

When TDS clauses contain eventualities then the resolutionprocedure tackles the cases where such promises for
the events to occur contradict some invariants, or loops [6]. We only note here that loops are formulae that constrain
some proposition to be always true (on all or some paths) given some conditions hold. Finally, when two deontic
clauses contain complimentary constraints,Oil andPi¬l then we apply the new, deontic resolution rule, which, in
fact, works similarly to the modal resolution rule in [19].

DRES
true ⇒ D ∨ Oil
true ⇒ D′ ∨ Pi¬l
true ⇒ D ∨ D′

TRES
A ⇒ E ¬l〈f〉
B ⇒ A♦l
B ⇒ A(¬AW l)

The resolvent of the TRES rule indicates that given the premises of the rule, i.e. a loop in¬l on all paths and to
avoid a contradiction, we do not want the conditions,A, for the loop to occur unlessl has been satisfied (see [6] for
more details and explanation why in this particular case we have rather unusual distribution of the path quantifiers in
the premises and conclusion).

CoreGRID TR-0173 11

2.6.2 Resolution Example

Here we present a resolution based refutation for the set of clauses of TDS obtained for the component system analysed
in the previous section.

TDS
1. r ⇒ A gs
2. true ⇒ ¬r ∨ Oi¬q
3. s ⇒ E gr〈f〉
4. true ⇒ ¬s ∨ Oi¬q
5. start ⇒ x
6. x ⇒ A♦w
7. true ⇒ ¬w ∨ Piq

Proof
8. true ⇒ ¬s ∨ ¬w DRES 4, 7
9. r ⇒ A g¬w SRES 2, 1, 8

10. s ⇒ A g¬w from 8
11. r ∨ s ⇒ E g ¬w〈f〉 1, 3, 9, 10
12. x ⇒ ¬(r ∨ s)W w TRES, 6, 11
13. x ⇒ w ∨ ¬(r ∨ s) W removal, 12
14. x ⇒ w ∨ ¬r classical, 13
15. x ⇒ w ∨ ¬s classical, 13
16. start ⇒ ¬x ∨ w ∨ ¬r temporising, 14
17. start ⇒ ¬x ∨ w ∨ ¬s temporising, 15
18. start ⇒ ¬s ∨ ¬w temporising, 8
19. start ⇒ ¬s SRES1, 5, 17, 18

In this proof, step 8 is obtained by the application of deontic resolution to 4 and 7. Step 9 is the application of Step
Resolution to 1 and 8 (recall that fromtrue ⇒ ¬s ∨ ¬w by temporising we can derivestart ⇒ ¬s ∨ ¬w and
true ⇒ A g(¬s ∨ ¬w), and we use the latter to resolve with 1). Thus, fromtrue ⇒ A g(¬s ∨ ¬w) we also have
step 10.

Now, since we have an eventuality clause 6,x ⇒ A♦w, the resolution based verification technique searches for a
loop in¬w. The desired loop can be found combining together clauses 1,3, 9 and 10 to give us:r∨s ⇒ E g ¬w〈f〉.
This loop being resolved with the eventuality clause, produces the resolvent on step 12. RemovingW from this
resolvent, we deduce 13. Subsequent classical transformation and the temporising rule guide the deduction of steps
14-18. Finally, applying Step Resolution, we derive step 19.

In the next section we will show how these refutation is linked to the model update procedures.

2.7 Model Update Example

As we mentioned, we can describe how our system can identify normative invariants which should be preserved, we
can also detect hidden invariants, i.e. those that are not explicitly given in the specification.

Analysing the proof in the previous section we know thats should not be initially active. Note that our procedure
has detected a loop (invariant) in¬w which is immediately obvious from the set of TDS clauses. Additionally, this
loop, in conjunction with clauses 2 and 7 indicates a hidden ‘deontic invariant’ property, thats fires the conditionOi¬q
andw fires the conditionPiq. Now, if we assume thatr is initially active, then we can continue the proof contained in
the previous section and derive a contradiction as follows:

20. start ⇒ r assumption
21. start ⇒ w SRES 1, 1, 16, 20
22. start ⇒ P iq SRES1, 7, 21
23. start ⇒ Oi¬q SRES1, 2, 20
24. start ⇒ false DRES, 22, 23

Thus, a request to bring a composite component,q to the system can only be satisfied ifr is not active. Otherwise,
if r is bound to the system, the request to bindq should be rejected.

In our deontic language, we can set up some predefined accessibility (on the top of those that are defined for every
model - such as transitivity, etc) which we call deonticallyaccessible worlds During the reconfiguration we want to
arrive at deontically accessible world to update our model,we can do this in two ways:

1. When such a world that corresponds to the reconfiguration specification can be found in the model and it is
deontically accessible

2. When we cannot find such a world we want to update the model, this update should then satisfy both, the criteria
of reconfiguration and this deontic accessibility

CoreGRID TR-0173 12

3 Conclusions and Future Works

There are some open problems and future works that need to be considered from this point on. In this section, we
outline these aspects and give some ideas on the path that will be taken to solve these tasks.
So far, the following aspects have been tackled:

• Proposed a specification/verification framework [3].

• Analysed different deductive techniques as verification (resolution/natural deduction) tools.

• Extended propositional specification language by norms andproved the correctness of deontic temporal resolu-
tion (in relation to the axiomatics of temporal deontic logic). This method simulates earlier developed method
for logic of rational agency by combining temporal and belief constraints.

• Investigated states of components and proposed relevant specification.

• Proposed an automata based approach for the whole model (which will need to be further analysed to enable
this approach).

• Proposed a general scenario of using temporal deontic specification/verification for reconfiguration (which will
need to be researched in detail, in particular for the model update).

The following are some issues and incomplete tasks which areleft to solve:

1. Identify useful assumptions we can make in the specification language which currently does not allow for presen-
tation of properties/relationships as first order language. The obstacle in applying only propositional language
needs to be avoided; first order plus temporal framework is not only undecidable but also incomplete, and could
be solved by thinking of fragments of first order temporal logic that are “nice” (i.e. decidable); it must be defined
what exactly can be represented/specified using propositional language, which is the base for the analysis of an
“average case”.

2. Further analyse the aspect of automata based model through the use of states of components and automata. So
far we have been working under the assumption that the automaton on the bottom layer simply goes through the
component’s states (i.e. the states of components are the states of the automaton), but the specification here may
result to be more complex.

3. Another aspect to be considered in automata based representation, is how exactly the two automata will interact.
We have not yet specified how the bottom layer automaton feedsthe environmental one (i.e. how this passing
of labels is carried on); further on this is to define exactly the tree automaton which would work on the environ-
mental level. Unlike linear-time, where different type of automata on infinite words simulate each other, in the
case of tree automata we can consider a few alternatives; depending on the type of tree automata there will be a
need to prove that extended normal form can simulate such automaton.

4. Finally, the reconfiguration scenario should be exploredin detail. It is not yet clear how we derive a model
update, which was initially thought to derive a guide for theupdate from the results of the resolution verification.

References

[1] T. Barros and L. Henrio and E. Madelaine. Verification of Distributed Hierarchical Components. InProceedings of
the International Workshop on Formal Aspects of Component Software (FACS’05). Electronic Notes in Theoretical
Computer Science (ENTCS). Macao, 2005, Oct.

[2] A. Basso and A. Bolotov. Towards GCM reconfiguration - extending specification by norms. To appear in:
CoreGRID Springer Volume of the CoreGRID Workshop at Heraklion, June 2007.

[3] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. Henrio and M. Urbanski. Specification and Verification of
Reconfiguration Protocols in Grid Component Systems. InProceedings of the 3rd IEEE Conference On Intelligent
Systems IS-200, 2006, IEEE.

CoreGRID TR-0173 13

[4] Batista, T., Joolia, A. and Coulson, G. Managing DynamicReconfiguration in Component-based Systems Pro-
ceedings of the European Workshop on Software Architectures, June, 2005, Pisa,Italy, Springer-Velag LNCS
series, Vol 3527, pp 1-18.

[5] F. Baude and D. Caromel and F. Huet and L. Mestre and J. Vayssiere Interactive and Descriptor-Based Deployment
of Object-Oriented Grid Applications HPDC ’02: Proceedings of the 11 th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 isbn 0-7695-1686-6, p93, IEEE Computer Society.

[6] A. Bolotov. Clausal resolution for extended computation tree logic ECTL. InProceedings of the Time-
2003/International Conference on Temporal Logic 2003, Cairns, July 2003. IEEE.

[7] A. Bolotov and A. Basukoski. Clausal resolution for extended computation tree logic ECTL.Journal of Applied
Logic, in Press.

[8] A. Bolotov and A. Basukoski. A Clausal Resolution Methodfor Branching Time Logic ECTL+. Annals of
Mathematics and Artificial Intelligence, Springer Verlag,in Press.

[9] A. Bolotov and A. Basukoski. Search Strategies for Resolution in CTL-Type Logics: Extension and Complexity.
In Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, (TIME 2005)
195 - 197, IEEE Computer Society, 2005.

[10] A. Bolotov, A. Basukoski, O. Grigoriev, and V. Shangin.Natural deduction calculus for linear-time temporal
logic. In Joint European Conference on Artificial Intelligence (JELIA-2006), pages 56–68, 2006.

[11] A. Bolotov, V. Bocharov, A. Gorchakov, and V. Shangin. Automated first order natural deduction. InProceedings
of IICAI, pages 1292–1311, 2005.

[12] A. Bolotov, C. Dixon and M. Fisher. On the Relationship between Normal Form and W-automata (with M.Fisher
and C.Dixon). Journal of Logic and Computation, Volume 12, Issue 4, August 2002, pp. 561-581, Oxford Univer-
sity Press.

[13] A. Bolotov and M. Fisher. A Clausal Resolution Method for CTL Branching Time Temporal Logic.Journal of
Experimental and Theoretical Artificial Intelligence., 11:77–93, 1999.

[14] A. Bolotov, O. Grigoriev, and V. Shangin. Automated natural deduction for propositional linear-time temporal
logic. In To be published in the Proceedings of the Time-2007, International Symposium on Temporal Represen-
tation and Reasoning, June, 2007.

[15] A. Bolotov, O. Grigoriev, and V. Shangin. Natural deduction calculus for computation tree logic. InIEEE John
Vincent Atanasoff Symposium on Modern Computing, pages 175–183, 2006.

[16] E. M. Clarke, A. Fehnker, S. Jha and H. Veith. Temporal Logic Model Checking., Handbook of Networked and
Embedded Control Systems, 2005, pages 539-558.

[17] CoreGRID Programming Model Institute Basic Features of the Grid Component Model Deliverable D.PM.04,
CoreGRID, March 2007.

[18] Y. Ding and Y. Zhang. CTL model update: Semantics, computations and implementation. In Proceedings of the
17th Europen Conference on Artificial Intelligence (ECAI 2006), pp 362-366. IOS Press 2006.

[19] C. Dixon, M. Fisher and A. Bolotov. Resolution in a Logicof Rational Agency. InProceedings of the 14th
European Conference on Artificial Intelligence (ECAI 2000), Berlin, Germany.

[20] C. Dixon, M. Fisher, and B. Konev. Tractable Temporal Reasoning. InProceedings of the Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), pages 318-323, January 6-12th 2007, Hyderabad, India.

[21] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor,Handbook of Theoretical Computer
Science: Volume B, Formal Models and Semantics., pages 996–1072. Elsevier, 1990.

[22] E. A. Emerson and A. P. Sistla. Deciding full branching time logic. InSTOC 1984, Proceedings of, pages 14–24,
1984.

CoreGRID TR-0173 14

[23] T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates, and counterfac-
tuals. PODS ’92: Proceedings of the eleventh ACM SIGACT-SIGMOD-SIGART symposium, p261-273, 1992,
citeseer.ist.psu.edu/eiter92complexity.html.

[24] C. Goble, D. De Roure, N.R. Shadbolt, and A.A.A. Fernandes. Enhancing Services and Applications with
Knowledge and Semantics. InI. Foster and C. Kesselman, eds. The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan-Kaufmann, 2004.

[25] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic verifications. InProceed-
ings of the 25th International Colloquium on Automata, Languages and Programming (ICALP-98), Vol. 1443 of
Lecture Notes in Computer Science, Springer:1-16,1998.

[26] A. Lomuscio and B. Wozna. A complete and decidable axiomatisation for deontic interpreted systems. InDEON,
volume 4048 ofLecture Notes in Computer Science, pages 238–254. Springer, 2006.

[27] Z. Manna and A. Pnueli. Temporal Specification and Verification of Reactive Modules. Weizmann Institute of
Science Technical Report, March 1992.

[28] A. Simpson.The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, College of Science and
Engineering, School of Informatics, University of Edinburgh, 1994.

[29] E. A. Strunk and J. C. Knight. Assured Reconfiguration ofEmbedded Real-Time Software. DSN ’04: Pro-
ceedings of the 2004 International Conference on Dependable Systems and Networks, 2004, isbn 0-7695-2052-9,
p367, IEEE Computer Society, Washington, DC, USA.

[30] J. Tatemura CDDLM Configuration Description Language Specification GFD-R-P.085, August 2006.

[31] J. Thiyagalingam, S. Isaiadis and V. Getov. Towards Building a Generic Services Platform: A Components-
Oriented Approach. In: V. Getov and T. Kielmann, eds. Component Models and Systems for Grid Applications,
Springer-Verlag, 2004.

CoreGRID TR-0173 15

