[G 1 European Research Network on Foundations, Software Infrastructures and Applications
o {E_—'a#— for large scale distributed, GRID and Peer-to-Peer Technologies

A Metwork of Excellence funded by the European Corrmission

Dynamic Reconfiguration of GCM components

A.Basso, A. Bolotov, V. Getov
{A. Basso, A. Bol ot ov, A. Get ov}@wmi n. ac. uk
University of Westminster, UK

L. Henrio
{Ludovi c. Henri o}@ophia.inria.fr
INRIA, Sophia Antipolis, France

N CoreGRID Technical Report
(oreGRAMB— Number TR-0173

——— September 19, 2008

Institute on Programming Model

CoreGRID - Network of Excellence
URL.: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Dynamic Reconfiguration of GCM components

A.Basso, A. Bolotov, V. Getov
{A. Basso, A. Bol ot ov, A. Get ov}@wi n. ac. uk
University of Westminster, UK

L. Henrio
{Ludovi c. Henri o}@ophia.inria.fr
INRIA, Sophia Antipolis, France

CoreGRID TR-0173
September 19, 2008

Abstract

We detail in this report past research and current/futuveldpments in formal specification of Grid component
systems by temporal logic and consequent resolution tgaknifor an automated dynamic reconfiguration of com-
ponents. It is analysed the specification procedure of GCNtl(Gomponent Model) components and infrastructure
in respect to their state behaviour, and the verificatiorcgge in a dynamic and reconfigurable distributed system.
Furthermore it is demonstrated how an automata based mistiedd to achieve the specification, as well as how the
enrichment of the temporal specification language of Coatmirt Tree Logic CTL with the ability to capture norms,
allows to formally define the concept of reconfiguration.

1 Introduction

There are two approaches to building long-lived and flexibled systems: exhaustive and generic. The former
approach provides rich systems satisfying every servipeast from applications but consequently its implemeaorati
suffers from very high complexity. In the latter approacle, kepresent only the basic set of services (minimal and
essential) and thus overcome the complexity of the exhauagiproach. However, to achieve the full functionality of
the system, we must make this lightweight core platformmégarable and expandable. One of the possible solutions
here is to identify and describe the basic set of featuresetbmponent model and to consider any other functions
as pluggable components [31] which can be brought on-linenster necessary [24].

In building generic Grid systems, we can take advantage afsiclrepresentation of the system and build the
required component parts on top as required. To take fulaiathge of this method, we have to ensure an easy
and secure way to expand and reconfigure the platform. Thelbeemplexity of this type of system is directly
proportional to the type and amount of services implemer@emponent models such as Fractal and the more specific
Grid Component Model (GCM) allow for modular design of apptions which can be easily reused and combined,
ensuring greater reliability. This is important in distrtbd systems where asynchronous components must be taken
into consideration, especially when the need for a dynaaetomfiguration is present. The GCM specification defines
the basic (non-functional) controls to be implemented,andmber of constraints on the interplay between functional
and non-functional operations. In these models, comparnetaract together by being bound through interfaces.

Establishing the theoretical foundations of the generacesses involved in designing and functioning of such
Grid systems is highly important. A significant part of thesearch lies in the area of formal specification of a
component model and its infrastructure in relation to theadyic state changes of such model, and its verification.

This research work is carried out under the FP6 Network ofHiecce CoreGRID funded by the European Commission (Conit&l-2002-
004265).

For the specification of this behaviour we can use a rich teaifimmework [21] with subsequent application of a
verification technique. Given a formal specification of dritisited system there are two major approaches to formal
verification of this specification: algorithmic and deduet[25]. While the algorithmic approach is fully automated,
as in the case of model checking, its application, in gen&akstricted to finite state systems. On the other hand,
methods of the second, deductive approach, can handleaaybstystems providing uniform proofs. To the best of
our knowledge, the only technique currently used in thefieation of distributed hierarchical components is model
checking.

Note that a model checking technique, which verifies the @ntigs of the components against the specification,
has already been tested in various circumstances, one ohwhidescribed in [1]. While model checking [16] is a
powerful and well established technique it has a partiadlawback in its explorative nature, and makes considering
the environment (especially during dynamic reconfigurgtimpractical. Deductive methods on the other hand, can
be applied on a large infrastructure-bound system anddurthre, can be integrated into reconfiguration scenarios.
The technique we explored cannot replace model checkingisasot intended for specification of behaviour of single
components or static composition of components, on the btnad, it can complement model checking by assuming
this part of the verification is already been done, and foguen the dynamic state changes of a running Grid system
and its current infrastructure.

In our approach the components are modelled in a specificbiragrtime temporal logic, or SNfry,

(Simplified Normal Form for Computation Tree Logic) [13],chttnen the temporal resolution is applied as a resolution
tool. SNRy, initially developed for CTL has been shown to be able to espgmple fairness constraints and their
Boolean combinations [7, 8]. Furthermore, a clausal régiwver the set of SN, clauses has been defined [6, 7]
and recently the search strategies for this method wereptes in [9]. As a specific deductive method we have
applied a temporal resolution method to a simple componerei[3]. In [2] we proposed a framework for the
specification of a reconfiguration process by deontic eibensf the underlying language. However, the complexity
of this approach turned out to be very high and one of the plesgiays of its reduction would be to incorporate the
developments in line with [20].

2 Background
2.1 Component Model

Fractal is a modular and extensible component model. Thé Gsimponent model (GCM) is an extention of Fractal
built to accommodate requirements in distributed systémsarticular the ones developed by the CoreGRID project.
The GCM specification defines a set of notions characterisirsgmodel, an API (Application Program Interface),
and an ADL (Architecture Description Language).

Components are characterised by tleeintentand themembraneThe content of a component can be hidden (in
which case it is simply a black box) or it can be constitute@lsystem of some other components (sub-components).
In the former case we would call a componpritnitive while the latter case represents@mpositecomponent. The
membrane, or controller, controls the compon€&ntrollersaddress non-functional aspects of the component.

GCM is a multi-level specifications. Depending on their @onfance level, GCM components can feature intro-
spection and/or configuration. Tleentrol interfaces are used in the GCM model to allow configuratiesdnfigu-
ration), and are defined a®n functional On the other hand, the functional interfaces of a compoaenassociated
with its functionality. Afunctionalinterface can provide the required functionality and we itshe serverinterface.
Alternatively, aclientinterface requires some other functionality.

Component interfaces are linked togethetlrydings For this research, we will only consider primitive binding
that are simple bindings transmitting invocations fromdhent interface to the connected server interface.

There are few controllers that have been already defined i @@it others may be user-defined depending on
the needs of the model); the most important are:

e Theattribute controlleris used to configure a property within a component, when tiseme need to take into
consideration bindings of interfaces.

e Thebinding controlleris used when the attribute controller is not applicable astda binding/unbinding of
interfaces is required.

CoreGRID TR-0173 2

e Thecontent controlleican be used to retrieve the representation ostilecomponentnd add or remove them
accordingly; if a sub component gharedby one or more other components, the scenario must be defined s
that also these other components are taken into consioerati

e Thelife cycle controllerallows to start and stop a component, it is used for dynangigrréguration so that all
other controls can be applied safely to the component whdebmponent is not in execution.

2.2 Architecture

In the architecture developed, the formal specificatiorclieved by the analysis of three main parts: the primitive
components, the composition of the former into compositefmanents through the Architecture Description Language
(ADL) file and the infrastructure (see Figure 1). The first tar@ combined to deduce the state behaviour of the
component system - a high-level behaviour distinct fromdhe of a single component, which we assume to be
already formally verified through other techniques beingently researched; the specification is partially given as
an input by the user in the case of primitive components, artigly automatically extrapolated using different
sources, such as source code and the ADL file. The infrasteieg specified mainly according to the user’s need,
and following well defined and accepted constrains such@setfor safety, fairness, etc. [27] and in relation to the
resources required and services provided. The formalfigeedn derived through this process is a fusion of deontic
and computation tree temporal logic, extended from theipusvwdevelopments in [3], which is a suitable input format
for our deductive reasoning tool. The properties to be $igelcand verified by this techniques are the ones which are
not possible to be considered when a system is specified &tia sy, this includes but is not limited to: presence of
resources and services, availability of distributed congus, etc.

A N
Behaviourof /
Primitive

System
Specification

Architecture

o Verification
Description

Tool

Environment Infrastructure
Behaviour Specification
__//

Figure 1: Architecture

State behaviour specification - an examplén the classical approach to component behaviour spedificat
the term "behaviour” is referred to the inner componentisclionality - if the component is supposed to calculate
the factorial, is it doing it correctly? When we consider #tate behaviour of a component instead, we are taking
into consideration a different matter; we are looking fargé requirements that will make the component "behave”
correctly with the rest of the system. When thinking aboutalsexample, this can be trivial - the parser can check
if all the libraries required by the component are presemaioulate the factorial - but what happens when we talk
about a distributed system, where changes might be neederldone at runtime? What if we require to replace a
component but the component we want to replace depends @oarce which is not available? We have taken into
consideration these types of situations while developisgeification procedure. We take into consideration tlee lif
cycle of a component and define its states in a formal way dalteg can be used in the system specification. We
consider past developments within the GCM and other stateea@®rid systems [30] to define a set of states to be
generated and could be monitored by specific software [1H]s Tifecycle is restricted, in fact it only models the
deployment state of the system (and consequentially itessteansitions throughout the life of the system), not its

CoreGRID TR-0173 3

operational characteristics. For example, once a compasém running state, it is considered to be available. On
the other hand, the service may fail for other unforeseenunistances (hence the need for a component monitoring
system during runtime which will report a need for changés the state behaviour specification). We can represent
these lifecycle states as in Figure 2.

Component X
A A
destroyX | | destroyX
Instance F /4 Terminated
\
/ i
initializeX Fail terminateX
v / h
/ \
Initialization k Stopped
stopX
startX restartX
Started

Figure 2: Component’s Lifecycle States

In the GCM specification, the life-cycle controller is extien allowing to separate partially the life-cycle states
of the controller and of the content. Generally, when a camepbcreated, it is firstly instantiated (deployment stage)
and any operations (such as dependencies checks) areqgdchsthis state is assumed that the resource monitoring
process will detect the resources required by the compaeththeir presence. At this point the states changes
initialise and destroy could be reached. The next stateifaisg the component monitoring process has not detected a
failure state) is the started state. This state is indiedty the services required/provided by the componentiress
that are being deployed and available for use. This state woierefer to the internal operations of the component, but
only the resources being used. Furthermore it should be tieaif a component would be reported at any state to
have reached the failure state, the component itself miapestavailable to the system (although its required resesirc
would become available), on the other hand the servicesgedby the component would be terminated. This applies
to the terminated state as well. Due to the hierarchical asitipn of components, we can plot recursively resources
required and services provided in the behavioural statetesy When a component is functionally stopped (which
corresponds to the stopped state of the Fractal specifijatitvocation on controller interfaces are enabled and the
content of the component can be reconfigured. After the fegumation has taken place, the Fractal specification
allows for the component to be restarted by using the stirbeahe component again.

Automata Based Modelln building the specification protocol, we plan to follow wkehown automata construc-
tions. We take a simple finite state automaton on finite stify the components specification, and a more complex
finite state automata on infinite trees to define the enviraim&he automata at component level are used for the
creation of labels defining the various states in which thestered component is, and are then fed upon request on
to the various states of the automata at environment lesahawn in Figure 3.

In the construction of this tree automaton, every statelisllad according to state of components (passed over
from the component level automaton) and resources. In #se the transition function is not only related to the state
transition of components, but is also tightly bound to therdie logic accessibility relation. Here we expect that we
would be able to specify the automaton in the normal form fot CSNFcy,, developed in [13]. Although we do not
have a rigorous proof of this, we can anticipate that theatitn here would be similar to the one in the linear-time
case. Namely, in [12], it was shown that a Buchi word automatm be represented in terms of S\, a normal

CoreGRID TR-0173 4

Environmer

xa> <bp <c> <7a> <

<a> <>

<a> <c> <a> <c>

<—a> <c>

Component a Componentb| |Component c

Figure 3: Automata Based Model

form for PLTL. Similarly, we can represent a Buchi tree auddom in terms of SNEr,. More precisely, we use
SNFcrito specify the tree automaton and then extend this speddfictd a deontic temporal specification [2] and
apply a resolution based verification technique as a vdiificgrocedure. As detailed in section 2.5, we assume that
the models of CTL type logic are infinite trees, i.e. evenhghtough such tree is an infinite path, allowing us to have
these closure properties (suffix, limit and fusion closutbat make these models so called R-generable structures
[21].

System/Infrastructure Behaviour. To extrapolate the state behaviour, we need informatiorheratchitecture
and hierarchical components structure, its dynamic flowndoarimation, the possible requirements and external re-
guests etc. Itis possible to extrapolate interface andihgsinformation from the XML based ADL file. This gives
us an idea of the flow of the system; the user might need to rdfiegrocess, for example to keep significant pa-
rameters only or add relevant others. On the other handr othveponent’s requirements must be grabbed directly
from the component’s definitions. Since one of the GridCoBIg’'$ functionality will include a GCM parser to build
component models, we can reuse some of the data it providdseprint these requirements, leaving the task to the
programmer to fill in the gaps. The infrastructure can regmea general purpose environment based on some common
grounds, or a specific one, defined by the programmer. In timeeiocase, infrastructure must, of course, leave room
for further expansion and adaptation depending on the progrer’s need.

Deontic extension of specificationWe develop a specification language based on the fusion opGtation Tree
Logic (CTL) and deontic logic to represent the propertiethefbehaviour protocol. The requirements of the protocol
are understood as norms and specified in terms of deonticlitiesiobligations” and "permission”. The introduction
of this deontic dimension not only increases the expressis® of the system capturing the normative nature of the
specification but also allows us to approach the reconfiguraroblem in a novel way.

Complexity. We have mentioned that while our initial papers on the régnilbased verification of the component
model model specifications [3] opened a theoretical praspfabese developments, the complexity of the resolution
based verification has raised some concerns with the fégsiii applying this method to a full scale component
model. Therefore, there has been a need for complexity tieudJnlike model checking, where the complexity lies
in the model generation, deductive reasoning ‘suffershimerification process. One of the ways to overcome the
problem would be to develop a tractable sub-classes of gitipal linear temporal logic, based on the use of XOR
fragments of the logic following the linear time resolutitstemework in [20]. It should be also considered that the
initial specification would not be as complex as in the moshemn uses of model checking, since the component’s
behaviour to be specified is only bound to the dynamic statesdo not consider the component’s behaviour in the

CoreGRID TR-0173 5

classical sense (the functionality).

2.3 Reconfiguration

The reconfiguration aspect is an essential one in this refseard we argue that our approach brings some impor-
tant novelty comparing with other similar formal approagie specification and verification. We need therefore to
introduce this notion and give some definitions and desoripton how we tackle the problem.

We refer to reconfiguration as to the process through whigisi@m halts operations under its current source spec-
ification and begins operations under a different targetifipation [29]. Due to the underlying structure of generic
Grid systems, and the particular nature of the reconfigumgirocess being developed, we consider the dynamic re-
configuration process as an unforeseen action at develdpmer(known as ad-hoc reconfiguration [4]), therefore we
will not be considering programmed reconfiguration. Anghsful example could be the replacement of a software
component by the user, or an automated healing procesatctiby the system itself. In the case that the system is not
yet deployed, the verification of the overall system behav{mconsistency check) can be triggered manually at any
step of the development process; the verification tool (Vightisimply detect inconsistencies and trigger the healing
process or complete the verification and return to the usaenthe system is deployed, the verification tool will run
continuously and the system will report back the currertestéor model mapping; if a reconfiguration procedure is
requested or inconsistency detected, the healing prosésgdgered. The inner behaviour of single components and
their static composition is assumed to be pre-specified arniflad using other techniques, such as model checking.
We do not claim by any mean to be able to dynamically run a eetifin on the behaviour of each and every single
component; we aim at a higher level of behaviour, the oneebtrerall Grid system, against the Grid infrastructure.

In both static and dynamic reconfiguration, there are thossiple responses to a request for reconfiguration:

1. Full rejection. The VT rejects the reconfiguration request until the job isfiad or there is a suitable change
in the infrastructure. In this case, the VT might return te tiser a suggestion on how the reconfiguration could
be acceptable by suggesting a set of states which are duedssim the current state, in other words, the VT
gives an ‘if’ condition which should be available to the gstto accept the reconfiguration request.

2. Full acceptanceThe VT accepts the request for reconfiguration without amstrains. This process assumes
that the environment will not change in a affecting way dgttine required period for reconfiguration.

3. Partial acceptanceThe VT accepts the request for reconfiguration but givesipetate-time constrains. In
this case, need for automated reconfiguration is essethigal/ T may also suggest a possible set of states which
would allow for a broader acceptance (much like in the firsega

4. Partial rejection. Similarly to partial acceptance, the VT rejects the reqémsteconfiguration with some time
constraints.

All of the above responses to requests for reconfiguratiemmaended for automated reconfiguration only - this is
the only way to assure that the process takes place at abteptate-time and infrastructure compliance time.

The dynamic reconfiguration process works in a circular wagyre 4] and it is divided into two majors steps
(detailed below) before the model update can take place.appeoach here is to specify general invariants for the
infrastructure and to accept any change to the system, gabotese invariants hold. We assume that the infrasteuctur
has some pre-definsét of normsvhich define the constraints for the system, in order to ensystem safety, mission
success, or other crucial system properties which arearitispecially in distributed systems.

Model update request.A model update request can be triggered by a user’s intetdiogconfigure the system,
or by an inconsistency detection from the Verification Tdols reflected in the model as a change to the behaviour
specification and it is constrained by the infrastructusgrietions. For example, the user might want to upgrade a
component, but these changes must conform to the limiasenfor such component. If the changes themselves are
safe for the system, the Verification Tool passes to the riegt s

Model mapping. For the verification process to understand its current stetiee temporal tree, there is a need
for a constant ‘model mapping’; in other words, a processinmin the background needs to be present in order to
map the structure of the system into a model tree. This caadiyémplemented alongside with a current monitoring
system which will keep track of this mapping indicating whigarts of the system are currently in which states in
the model tree [5]. This process is essential to ensure thaiast’ states are misused by the VT during the healing
process.

CoreGRID TR-0173 6

Model Mapping <\f A\\
5L

.

A S
</ Vi V

4 Healing Process
Model Update
Request L /7

Figure 4: reconfiguration Cycle

2.4 Model Update (Healing process)

Model update is the core of the reconfiguration process. \Wé& t@ model update as to the process by which the state
model, generated from the specification, is changed orghlgrtieplaced in order to respond to the update request.
Unlike model revision, in which the description is simplyre@xted but the overall system remains unchanged, using
model update assumes fundamental changes to the systendimg.adeleting and replacing states in the model
behaviour [23]. In this process, different types of charesdealt with in a similar fashion, independently from the
origin of the update (external user input or self healingcpss). To map the states set within where the model update
can be applied, we apply the rules that formally define regandition in sectior§2.3; assuming that specified norms
and invariants do not contradict the new specification ferdblected states set, the new set of states (and therefore
the updated specification) is taken as the new model to bearsthe updated component can be replaced by the
software through standard unbinding etc.

Healing process.This process is triggered when the new set of updated stagssribt conform with the previous
or following states. In other words, this process is usedetrch for a feasible modification to the rejected set of
states, within the state model used. Formally, we searclréfeemodel for a set of states which conform with the
norms and invariants, and is applicable for this set of staBandidate states for such an update in relation for some
states;, do not have to be in an ‘achievable’ (from the tree order pofrview) future ofs;, i.e. do not have to
belong to a subtree with the rosf, but only have to be ‘accessible’ from the current state @ting to the norms
set (‘deontically’ accessible) by the infrastructure. Tamdidate set of states (or a more readable parsed version) i
reported to the user/developer as a possible solution tltimasistency detected. (healing is also triggered ifeher
was no supplied update as in the case of inconsistency @etecthis will open a prospect of re-configuring a model
by making this ‘deontically’ accessible state also actdssn terms of the tree order. We are planning to incorporate
here the ideas of a model update developed, in particult8in

2.5 Temporal Deontic Specification

As the deontic extension of CTL we consider the logic whicHescribed in [26]. We assume that the specification
of a component model now is either written directly in thiswfeamework of TDS or is initially given in the deontic
extension of the logic ECTL called ECTL}, and then is converted into the TDS. Since the structure of ERSnilar

to the SNk, we are able to subsequently apply the resolution basedoagiih technique which must be also
extended to cope with the normative dimension.

2.5.1 The logicECTL},

Inthe language of EC'I}, where formulae are built from the sétyop, of atomic propositions, ¢, r, ..., p1,q1,71, - - -,
Dny Gns Tns - - -, WE USE the following symbols: classical operatersa, =, V; temporal operators:] — ‘always in the

CoreGRID TR-0173 7

Figure 5: Model Update

future’; > — ‘at sometime in the future’® — ‘at the next moment in time’{/ — ‘until’; W — ‘unless’; and path
guantifiers:A — ‘for any future pathE — ‘for some future path.

For the deontic part we assume a det = {a,b,c...} of agents (processes), which we associate with deontic
modalitiesO,(¢) read as¢ is obligatory for an agent’ and P, () read as ¢ is permitted for an agent.

In the syntax of ECTI}, we distinguiststate(S) andpath (P) formulae, such tha$ are well formed formulae.
These classes of formulae are inductively defined below (@figs a formula of classical propositional logic)

Su=C|SAS|SVS|S= S|-S|API[EP|P,S|O,S

P:=PAP|PV P|P = P|-P|[1S|$S|OS|SUSISW S| LIOS|IGTS

Where path formulae are those that are evaluated along, attistate formulae are those that are evaluated at the
states of a tree.

Definition 1 (literal, modal literal) A literal is eitherp, or —p wherep is a proposition. Amodal literalis either®;!,
=01, P;l, =P;l wherel is a literal andi € Ag.

ECTL}, Semantics.We first introduce the notation of tree structures, the ugitey structures of time assumed
for branching-time logic.

Definition 2 Atreeis a pair (S, R), whereS is a set of states an? C S x S is a relation between states Sfsuch
thatsy € S is a unique root node, i.e. there is no statec S such thatR(s;, so); for everys; € S there exists; € S
such thatR(s;, s;); for everys;, s;, s € S, if R(s;, sx) andR(s;, si) thens; = s;.

A path x;, € Pis asequence of states s; 11, s;12 ... such thatfor alj > 4, (s;,s;+1) € R. Letx be the set of
all paths ofM. A pathy,, € x starting at the initial state is calledallpath. Let X be a family of all fullpaths oiM.
Given a pathy,, and a state; € x,,, (i < j) we term a finite subsequenpg, s;] = si, si+1,- .., s; of x5, a prefix
of a pathy,, and an infinite sub-sequengg s, 11, s;+2 .. . Of x,, a suffixof a pathy, abbreviated'u f (xs,, s;)-
Following [21], without loss of generality, we assume thadlerlying tree models are of at most countable branch-
ing.

Definition 3 (Total countable w-tree) A countablew-tree, 7,,, is a tree(S, R) with the family of all fullpaths X,

which satisfies the following conditions: each fullpathdsrmorphic to natural numbers; every statg € S has
a countable number of successoprs;is R-generablg?1], i.e. for every state,, € S, there existsy,, € X such
that s,,, € xn, and for every sequencg, = so, s1, 82 - .. the following is true:x,, € X if, and only if, for every
m (1 <m), R(Sm, Sm+1)-

Since inw trees fullpaths are isomorphic to natural numbers, in teeakthe paper we will abbreviate the relation

R as<.
Next, for the interpretation of deontic operators, we idtroe a binary agent accessibility relation.

CoreGRID TR-0173 8

Definition 4 (Deontic Accessibility Relation) Given a total countable treg, = (.5, <), a binary agent accessibility
relation D; C S x S, for each agent € Ag, satisfies the following properties: it &rial(for anyk € .S, there exists
I € S such thatD;(k,1)), transitive(for anyk, I, m € S, if D;(k,1) and D;(I,m) thenD;(k, m)), andEuclidian(for
anyk,l,m € S, if D;(k,l) and D;(k, m) thenD;(l, m)).

Let (S, <) be a total countable-tree with a roots, defined as in Def 3X be a set of all fullpaths] : S x
Prop — {true,false} be an interpretation function mapping atomic propositigyanbols to truth values at each
state, and ever®; C S x S (i € 1,...,n) be an agent accessibility relation defined as in Def 4. Now deaho
structure for interpretation of ECT}| formulae isM = (S, <, so, X, L, D1, ..., D).

Reminding that since the underlying tree structuresizugenerable, they are suffix, fusion and limit closed [21],
in Figure 6 we define a relatiof=’, which evaluates well-formed ECT]} formulae at a state,, in a modelM.

(M,sm) Ep iff —pe L(sm), forp € Prop
(M,sm) EAB iff foreach xs,,, (M, xs,,) EB
(M,sm) EEB iff there exists xs,,, such that
(M, xs,.) EB
(M,xs,.) EA iff (M, sn,) = A, for state formula A
(M,xs,) ELIB iff ~ foreachs, € xs,,,if m <nthen
(M, Suf(xs,.,5n)) F B
M. Xs,,) EOB it (M, Suf(Xs,, Sm+1)) E B
(M,xs,,) EAUB iff thereexists s, € xs,, suchthatm <n
and (M, Suf(xs,,,sn)) E B
and for each s € x5,,, fm<k<n
then (M, Suf(xs.,,sk)) E A
(Moxe,) EAWB it (Mox..) = lAor (M, xo,) = AUB
(M,sm) E OB iff foreachs, €S, if D,(m,n) then
(M, 50) b= B
(M, sm) EP.B iff there exists s, € S, such that D,(m,n)
and (M, s,) = B

Figure 6: ECTL}, semantics

Definition 5 (Satisfiability) A well-formedECTL], formula, B, is satisfiable if, and only if, there exists a modell
such that M, s¢) = B.

Definition 6 (Validity) A well-formedECTL], formula, B, is valid if, and only if, it is satisfied in every possible
model.

2.5.2 Temporal Deontic Specification
In this section we introduce the core concept of TemporaliieGpecification (TDS).

Definition 7 (Temporal Deontic Specification - TDS)TDS is a tuple(In, St, Ev, N, Lit) where In is the set of
initial constraints,St is the set of step constraint&v is the set of eventuality constrain¥y] is a set of normative
expressions, and.it is the set of literal constraints, i.e. formulae that are lggdly true. The structure of these
constraints calledtlausesis defined below where eaaoh, 3,,, v or [, is a literal, true or false d. is either a literal

or a modal literal involving theD or P operators,(ind) € IND is some index, and the clauses are supposed to be in
the scope of thd [] modality.

start = \/f:1 Bs (In) /\le ai = AQy (EVA)

Ayoi = AOWVho ful (SIA) Niwroi = EQvcmo (EVE)

/\leai = EO [\/Ztlgm](ind> (StE) true = \/|_ de (D)
true = _ 1l (Lit)

CoreGRID TR-0173 9

In the rest of the paper, similar to our previous presentatito simplify reading, we will omit writing the common
for all TDS clauses prefiA [].

2.5.3 Rules towards TDS

We suppose that the given specification is either directigtevrin terms of TDS or in the language of ECJLIn the
latter case the formulae of the specification must be tramefd into the desired form of TDS. Since ECJTlextends
ECTL™ by allowing deontic constraints and similarly since TDS @eantic extension of SNfrr,, a normal form for
the logic ECTL, [8] we simply enrich the transformation procedure of [8]thg corresponding rules dealing with
the deontic operations. In fact, due to the fact that thermigteraction between temporal and deontic constraints,
the only rule that is needed for the transformation of thenidae with deontic constraints is the renaming rule,
which would work similar to [19], i.e. which would allow us tename an embedded deontic subformula by a new
proposition. Thus, to assist the reader we will only revieese rules of the transformation procedure that are used in
our example in sectiof2.5.4 and sectiof2.6.2.

Renaming

GivenP = Q(F) we deriveP = Q(F/z) andz = F, whereQ(F) is a formula with the designated subformula
F andQ(F/x) means a result of replacirfg by a new proposition symbalin Q.

Temporising

Give a purely classical expressign= B we transform it intasstart = —A vV B andtrue = AO(-A V B).
In particular, we will apply the following case of this rulécom true = A Vv B derivestart = —-A v B and
true = AO(—AV B).

Removal of AW

Recall that the formula of the typ(A W B) or E(AW B) can appear as a result of the application of Temporal
Resolution rules. Hence, we would have to transform a resolaf this type into the desired form. This is first of
all achieved by the application of the) removal rule. In particular, we would apply the)V removal rule: given
P = A(AW B) deriveP = BV (AAz)andz = AO (B V (A Az)) [6].

2.5.4 TDS Example

Now, let us consider an example specification in which werdtsdly use a normative framework for reconfiguration,
and where a model is requested to be updated.

Letr ands represent two components that can be bound to the systetheFlatg be a new composite component,
a composition of- ands. Next, letr ands be such that always requires its counterpart componentpt to be active
in any of the next states andrequiresr not to be bound in some possible development of the systemat. the
successor state in the directi¢f)). Additionally, let us assume that the specification of thetem requires that this
new componeny, should not be bound at the next state. This is representétetfpllowing formula of ECTL:

(t)y All(r=A0sN0O;—q) NA[(s= (EOr A 0O;—q))
Finally, let the system receive a request for the permissi@ventually bind; whichever way it evolves:
(1) start = AOPiq

Our specification technique require to transform formyfa@nd() to the structure required by TDS. This translation,
as mentioned above, when it concerns with the temporalipaléscribed in our previous work [3, 8] and if it involves
deontic constraints then we additionally use standargidaltransformations towards normal forms and the rengmin
rule. To simplify the reading of the paper, we have alreadyented the rules involved into our examples below.

In the table below we summarise these conditions of the compiosystem and their representations in the lan-
guage of TDS (note that is a new (auxiliary) proposition introduced to achieve tbguired form of TDS clauses).
Recall that each clause of TDS is in the scope ofAliel and we will omit this common prefix for the TDS clauses in
the rest of the paper to simplify the reading. Also, recalt #ache step clause would have to be labelled by a specific
label f while everyE sometime clause by some index’(ind) [6].

CoreGRID TR-0173 10

Conditions of the System Constraints of TDS
Dependency between counterpart componentsr = AQO's

true = —r VvV 0;—q
s = EOr

true = —s VvV 0;—q
A request for the permission to eventually bind start = «

r = Aw

true = —w V Piq

2.6 Resolution based deduction verification of TDS
2.6.1 Resolution Rules

We first update the set of resolution rules developed for &\H13] by new resolution rules capturing the deontic
constraints. However, due to the lack of space, here we preséy those rules that will be involved into an example
of the refutation. Recall that among the set of the TDS clsuase initial clauses, step clauses, eventuality formulae,
and deontic clauses. In order to achieve refutation we appde types of resolution rules: Step Resolution (claksica
resolution) (SRES), Temporal Resolution (TRES), and deoasolution (DRES). SRES and TRES rules are described
in [6].

Two step resolution rules that will be used in our examplegaren below.

SRES1 SRES?2

start = [V B A= AO(VD)
start = [V C B=A0O(-lVE)
start = BV C ANB=A0O(DVE)

When TDS clauses contain eventualities then the resolptiocedure tackles the cases where such promises for
the events to occur contradict some invariants, or loops\@ only note here that loops are formulae that constrain
some proposition to be always true (on all or some paths)hgseene conditions hold. Finally, when two deontic
clauses contain complimentary constrairids] and P;,—I then we apply the new, deontic resolution rule, which, in
fact, works similarly to the modal resolution rule in [19].

DRES TRES

true = DV O,l A= E[=l
true = D'V Pl B = Al

true = DV D’ B=A(-AWI)

The resolvent of the TRES rule indicates that given the psemof the rule, i.e. a loop inl on all paths and to
avoid a contradiction, we do not want the conditiods for the loop to occur unledshas been satisfied (see [6] for
more details and explanation why in this particular case axemather unusual distribution of the path quantifiers in
the premises and conclusion).

CoreGRID TR-0173 11

2.6.2 Resolution Example

Here we present a resolution based refutation for the séao$es of TDS obtained for the component system analysed
in the previous section.

Proof
8. true = -sV-w DRES 4,7
TDS 9. r = AO-w SRES2, 1,8
L r = AOs 10. s = AO-w from 8
9. true = —rVOi-g 11. rvs = EO[-wy 1,3,9,10
5 s — EOr ! 12. x = -(rvs)Ww TRES, 6,11
4 true — sy %>4ﬁq 13. x = wV-(rvs) W removal, 12
5 start — o ’ 14. r = wV-r classz:cal, 13
6. r = AOw 15. r = wV-s classzca.l,.li%
7. true = -w\V7Pq 16. start = —-xzVwV-r temporising,l4d
¢ 17. start = —-axVwV-s temporising,15
18. start = -—sV-w temporising, 8
19. start = -—s SRES1, 5,17,18

In this proof, step 8 is obtained by the application of demrasolution to 4 and 7. Step 9 is the application of Step
Resolution to 1 and 8 (recall that frothue = —s vV —w by temporising we can derivétart = —s VvV —w and
true = AQO(—s Vv —w), and we use the latter to resolve with 1). Thus, frame = AO (—s V —w) we also have
step 10.

Now, since we have an eventuality clause: 63 A<{>w, the resolution based verification technique searches for a
loop in—w. The desired loop can be found combining together clausg®land 10 to give us:Vs = EO []-wy.
This loop being resolved with the eventuality clause, poeduthe resolvent on step 12. Removing from this
resolvent, we deduce 13. Subsequent classical transfiomsatd the temporising rule guide the deduction of steps
14-18. Finally, applying Step Resolution, we derive step 19

In the next section we will show how these refutation is lihke the model update procedures.

2.7 Model Update Example

As we mentioned, we can describe how our system can idertifyative invariants which should be preserved, we
can also detect hidden invariants, i.e. those that are pdicéky given in the specification.

Analysing the proof in the previous section we know thahould not be initially active. Note that our procedure
has detected a loop (invariant) #w which is immediately obvious from the set of TDS clauses. ifddally, this
loop, in conjunction with clauses 2 and 7 indicates a hiddewohtic invariant’ property, thatfires the conditior®; —¢
andw fires the conditiorP;q. Now, if we assume thatis initially active, then we can continue the proof contaiire
the previous section and derive a contradiction as follows:

20. start = r assumption

21. start = w SRES 1, 1,16,20
22. start = P,q SRES1, 7,21

23. start = O;-q SRESI1, 2,20

24. start = false DRES, 22,23

Thus, a request to bring a composite compongtt,the system can only be satisfied ifs not active. Otherwise,
if 7 is bound to the system, the request to bjrghould be rejected.

In our deontic language, we can set up some predefined daitigsgdn the top of those that are defined for every
model - such as transitivity, etc) which we call deonticabcessible worlds During the reconfiguration we want to
arrive at deontically accessible world to update our modelcan do this in two ways:

1. When such a world that corresponds to the reconfigurapenification can be found in the model and it is
deontically accessible

2. When we cannot find such a world we want to update the mddelipdate should then satisfy both, the criteria
of reconfiguration and this deontic accessibility

CoreGRID TR-0173 12

3 Conclusions and Future Works

There are some open problems and future works that need torts&dered from this point on. In this section, we
outline these aspects and give some ideas on the path thaewédken to solve these tasks.
So far, the following aspects have been tackled:

Proposed a specification/verification framework [3].
Analysed different deductive techniques as verificati@sdgtution/natural deduction) tools.

Extended propositional specification language by normganoded the correctness of deontic temporal resolu-
tion (in relation to the axiomatics of temporal deontic IggiThis method simulates earlier developed method
for logic of rational agency by combining temporal and bietienstraints.

Investigated states of components and proposed relevegifisption.

Proposed an automata based approach for the whole modeh(wiil need to be further analysed to enable
this approach).

Proposed a general scenario of using temporal deonticfaagicin/verification for reconfiguration (which will
need to be researched in detall, in particular for the mopéate).

The following are some issues and incomplete tasks whicleéir® solve:

1.

Identify useful assumptions we can make in the specifinddéinguage which currently does not allow for presen-
tation of properties/relationships as first order langudde obstacle in applying only propositional language
needs to be avoided; first order plus temporal frameworkti®nly undecidable but also incomplete, and could
be solved by thinking of fragments of first order temporalddbat are “nice” (i.e. decidable); it must be defined
what exactly can be represented/specified using propnaltianguage, which is the base for the analysis of an
“average case”.

. Further analyse the aspect of automata based model thtbegise of states of components and automata. So

far we have been working under the assumption that the attoroa the bottom layer simply goes through the
component’s states (i.e. the states of components aresttes sif the automaton), but the specification here may
result to be more complex.

. Another aspect to be considered in automata based repateos, is how exactly the two automata will interact.

We have not yet specified how the bottom layer automaton féedsnvironmental one (i.e. how this passing
of labels is carried on); further on this is to define exadily tree automaton which would work on the environ-
mental level. Unlike linear-time, where different type aft@amata on infinite words simulate each other, in the
case of tree automata we can consider a few alternativesndem on the type of tree automata there will be a
need to prove that extended normal form can simulate sucmeion.

. Finally, the reconfiguration scenario should be explanedetail. It is not yet clear how we derive a model

update, which was initially thought to derive a guide for tipelate from the results of the resolution verification.

References

[1] T.Barrosand L. Henrio and E. Madelaine. Verification aéftibuted Hierarchical Components.Pnoceedings of
the International Workshop on Formal Aspects of Componeftiv@re (FACS'05)Electronic Notes in Theoretical
Computer Science (ENTCS). Macao, 2005, Oct.

[2] A. Basso and A. Bolotov. Towards GCM reconfiguration -eading specification by norms. To appear in:
CoreGRID Springer Volume of the CoreGRID Workshop at HeoaklJune 2007.

[3] A. Basso, A. Bolotov, A. Basukoski, V. Getov, L. HenriodaM. Urbanski. Specification and Verification of
Reconfiguration Protocols in Grid Component System®&rbteedings of the 3rd IEEE Conference On Intelligent
Systems 1S-20@006, IEEE.

CoreGRID TR-0173 13

[4] Batista, T., Joolia, A. and Coulson, G. Managing DynaR&configuration in Component-based Systems Pro-
ceedings of the European Workshop on Software Architestutene, 2005, Pisa,ltaly, Springer-Velag LNCS
series, Vol 3527, pp 1-18.

[5] F. Baude and D. Caromel and F. Huet and L. Mestre and J si@ngsinteractive and Descriptor-Based Deployment
of Object-Oriented Grid Applications HPDC '02: Proceedirgf the 11 th IEEE International Symposium on
High Performance Distributed Computing HPDC-11 isbn 056886-6, p93, IEEE Computer Society.

[6] A. Bolotov. Clausal resolution for extended computatitvee logic ECTL. InProceedings of the Time-
2003/International Conference on Temporal Logic 2008irns, July 2003. IEEE.

[7] A. Bolotov and A. Basukoski. Clausal resolution for extieed computation tree logic ECTLournal of Applied
Logic, in Press.

[8] A. Bolotov and A. Basukoski. A Clausal Resolution Methfmdt Branching Time Logic ECTL+. Annals of
Mathematics and Artificial Intelligence, Springer VerlagPress.

[9] A. Bolotov and A. Basukoski. Search Strategies for Resoh in CTL-Type Logics: Extension and Complexity.
In Proceedings of the 12th International Symposium on Temepresentation and Reasoning, (TIME 2005)
195 - 197, IEEE Computer Society, 2005.

[10] A. Bolotov, A. Basukoski, O. Grigoriev, and V. ShangiMatural deduction calculus for linear-time temporal
logic. InJoint European Conference on Atrtificial Intelligence (J&E2006) pages 56—68, 2006.

[11] A.Bolotov, V. Bocharov, A. Gorchakov, and V. ShangirutAmated first order natural deduction Rroceedings
of IICAI, pages 1292-1311, 2005.

[12] A.Bolotov, C. Dixon and M. Fisher. On the Relationshgtlween Normal Form and W-automata (with M.Fisher
and C.Dixon). Journal of Logic and Computation, Volume ¥8pke 4, August 2002, pp. 561-581, Oxford Univer-
sity Press.

[13] A. Bolotov and M. Fisher. A Clausal Resolution Method @TL Branching Time Temporal Logiclournal of
Experimental and Theoretical Artificial Intelligencé1:77-93, 1999.

[14] A. Bolotov, O. Grigoriev, and V. Shangin. Automatedural deduction for propositional linear-time temporal
logic. In To be published in the Proceedings of the Time-2007, Intemal Symposium on Temporal Represen-
tation and Reasoningune, 2007.

[15] A. Bolotov, O. Grigoriev, and V. Shangin. Natural detlon calculus for computation tree logic. IEEE John
Vincent Atanasoff Symposium on Modern Computiages 175-183, 2006.

[16] E. M. Clarke, A. Fehnker, S. Jha and H. Veith. Temporajicdviodel Checking., Handbook of Networked and
Embedded Control Systems, 2005, pages 539-558.

[17] CoreGRID Programming Model Institute Basic Featurkthe Grid Component Model Deliverable D.PM.04,
CoreGRID, March 2007.

[18] Y. Ding and Y. Zhang. CTL model update: Semantics, cotafions and implementation. In Proceedings of the
17th Europen Conference on Atrtificial Intelligence (ECADB), pp 362-366. |OS Press 2006.

[19] C. Dixon, M. Fisher and A. Bolotov. Resolution in a Logi€ Rational Agency. IrProceedings of the 14th
European Conference on Atrtificial Intelligence (ECAI 2Q@»rlin, Germany.

[20] C. Dixon, M. Fisher, and B. Konev. Tractable TemporaaBening. IrProceedings of the Twentieth International
Joint Conference on Atrtificial Intelligence (IJCAI-QPages 318-323, January 6-12th 2007, Hyderabad, India.

[21] E. A. Emerson. Temporal and Modal Logic. In J. van Leenweditor,Handbook of Theoretical Computer
Science: Volume B, Formal Models and Semantages 996-1072. Elsevier, 1990.

[22] E. A. Emerson and A. P. Sistla. Deciding full branchiimye logic. INSTOC 1984, Proceedings @ages 14-24,
1984.

CoreGRID TR-0173 14

[23] T. Eiter and G. Gottlob. On the complexity of propositéd knowledge base revision, updates, and counterfac-
tuals. PODS '92: Proceedings of the eleventh ACM SIGACTI8@D-SIGART symposium, p261-273, 1992,
citeseer.ist.psu.edu/eiter92complexity.html.

[24] C. Goble, D. De Roure, N.R. Shadbolt, and A.A.A. Ferremd Enhancing Services and Applications with
Knowledge and Semantics. InFoster and C. Kesselman, eds. The Grid 2: Blueprint for avNeomputing
Infrastructure, Morgan-Kaufmanr2004.

[25] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verifigan of linear temporal logic verifications. IRroceed-
ings of the 25th International Colloquium on Automata, Laages and Programming (ICALP-98)ol. 1443 of
Lecture Notes in Computer Science, Springer:1-16,1998.

[26] A.Lomuscio and B. Wozna. A complete and decidable axtisation for deontic interpreted systemsDIEON,
volume 4048 oL ecture Notes in Computer Scienpages 238—-254. Springer, 2006.

[27] Z. Manna and A. Pnueli. Temporal Specification and Meaifion of Reactive Modules. Weizmann Institute of
Science Technical Report, March 1992.

[28] A. Simpson.The Proof Theory and Semantics of Intuitionistic Modal lco§ihD thesis, College of Science and
Engineering, School of Informatics, University of Edinghy 1994.

[29] E. A. Strunk and J. C. Knight. Assured ReconfiguratiorEafibedded Real-Time Software. DSN '04: Pro-
ceedings of the 2004 International Conference on Depeadldtems and Networks, 2004, isbn 0-7695-2052-9,
p367, IEEE Computer Society, Washington, DC, USA.

[30] J. Tatemura CDDLM Configuration Description Languagedfication GFD-R-P.085, August 2006.

[31] J. Thiyagalingam, S. Isaiadis and V. Getov. Towardsld@ng a Generic Services Platform: A Components-
Oriented Approach. In: V. Getov and T. Kielmann, eds. ComrgmiModels and Systems for Grid Applications,
Springer-Verlag, 2004.

CoreGRID TR-0173 15

