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Abstract

Grid Computing has succeeded in establishing production Grids serving various user communities all around the
world. The emerging Web technologies have already affected Grid development; the latest solutions from peer-to-
peer networking also need to be considered in order to successfully transform the currently separated production
Grids to a World-Wide Grid solving the big problem of Grid Interoperability. This paper gathers the promising peer-
to-peer technologies and investigates their applicability in current Grids. We state the requirements of a scalable and
adaptable high-level brokering architecture, and define the necessary routing mechanisms that can efficiently operate
this peer-to-peer Grid meta-brokering architecture.

1 Introduction
Grid Computing has succeeded in establishing production Grids serving various user communities all around the
world. Several world-wide Grid projects have delivered the expected developments in the area of high-performance
computing, but we cannot sit back and watch idle, how users tweak scripts to get complex, computation-intensive
applications run on various Grids still not mature enough for business purposes. The four year of intensive Grid
research in CoreGRID (a leading European Network of Excellence project [1]) has created a sustainable European
Grid Research Laboratory with 6 institutes that target different Grid research fields. They specify the Grid as a
fully distributed, dynamically reconfigurable, scalable and autonomous infrastructure to provide location independent,
pervasive, reliable, secure and efficient access to a coordinated set of services encapsulating and virtualizing resources
(computing power, storage, instruments, data, etc.) in order to generate knowledge. Though most of the above stated
adjectives hold for current Grids, Grid development is shifting and needs to focus more on cooperation with other
successful and popular related fields. Web and peer-to-peer (P2P) computing have attracted great attention recently,
and research in these areas has been fostered. NGG [2] has already envisaged the convergence of these research
fields, therefore it is important to merge ideas, join research efforts in order to build the world of SOKUs, self-aware,
adaptive and scalable Grid services. Life holds two certainties: death and taxes - this was the metaphor I. Foster et. al
used in [4] to illustrate that Grids and peer-to-peer technologies are both needed to organize large-scale computational
societies. Scalability and fault tolerance are two major issues Grids still cannot fully cope with. On the contrary P2P
systems operate on millions of nodes and still show good resilience on continuous node changes and failures. To solve
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the problem of Grid Interoperability, it is a must to investigate the application of yet proven successful peer-to-peer
solutions. In this paper we gather promising peer-to-peer technologies for solving Grid interoperability problems and
investigate the applicability of them. We target the resource management layer of the Grid middleware in our research,
therefore we are looking for a high-level, interoperable brokering solution. The next section mentions the related
approaches, Section 3. states the requirements of the new architecture, Section 4. gathers the alternative P2P overlays,
finally Section 5. describes the mechanisms required to operate the proposed architecture.

2 Related work
In the introduction we have seen that Grids and peer-to-peer technologies need each other. I. Foster et. al. have further
investigated in [5], how P2P approaches could be used in resource location. They proposed an unstructured overlay
for resource discovery, and evaluated random-forwarding and learning-based propagation strategies with an own Grid
emulator. They concluded that more sophisticated, learning-based search techniques are needed for Grids consisting
of tens of thousands of institutes.

Similarly to this previous approach D. Talia et al. [3] have also worked on P2P resource discovery for Grids.
They have written more technical reports in this field, their main contribution is a hybrid architecture of unstructured
overlay with superpeers in a Chord ring. They used the Grid5000 [6] testbed to evaluate their solution. The evaluation
results show that their solution is suitable for todays Grid systems, and would be able to substitute the currently more
centralized information systems.

Uppuruli et. al proposed a framework for distributed resources management in [7]. They use an XML-based
description to specify resource information. They use an unstructured architecture implementation based on Phex
Gnutella with ultrapeers. They target the connectivity layer instead of the management layer to create their peer-
to-peer system. The presented experiments show that their proposed approach is feasible to use P2P discovery in
Grids.

Most of the related approaches propose a unique solution for resource discovery in Grids, which is the role of Grid
information systems. Their novelty is that they use distributed, peer-to-peer architectures instead of the conservative
centralized ones. We decided to take a step forward and extend resource discovery with brokering. In the following
sections we state the requirements of this novel approach and explore its design space in order to arrive in an efficient
and suitable solution.

3 Problem statement: Peer-to-peer meta-brokering
The term meta-brokering has been first introduced in [8]. The main reason for creating another level in Grid resource
management on top of the existing brokers was to enhance Grid interoperability. The Grid Meta-Broker is a Grid
service that utilizes currently used resource brokers by providing a uniform interface to users. In this way users of
different communities can reach several Grids through their own brokers, without knowing about lower level details
of each Grid middleware (description language, resource availability and different submission interfaces). In this
work we build on and extend this model in order to complete the resource management layer of a future interoperable
WWG [12]. To achieve this we need to interconnect Meta-Brokers, share user requests among them to balance load
and maintain the whole architecture. This interconnected topology can be studied within the framework described in
our previous work [9, 10, 11]. The goal of this paper is to investigate different peer-to-peer solutions that are suitable
to be used in our approach.

Figure 1. shows our extended model. Brokers (B) operate Grids (G) or Virtual Organizations (VO) of resources (R)
with certain properties (P). These brokers can have different capabilities (C) that serve specific user requests, jobs (J).
Meta-brokers (MB) utilize more brokers and provide interface for different user communities to access different Grids.
Meta-brokers are interconnected peers in an overlay network. This interconnection also needs a slight modification
of the meta-broker peers: they maintain a local queue for incoming jobs and implements a routing mechanism to be
described later in Section 4. We further state the following assumptions:

• meta-brokers can be operated by various providers that do not necessary trust each other, therefore not all the
peers are interconnected in the network,

• as a result of lack of trust there is restricted information exchange among the peers,
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Figure 1: General P2P meta-brokering architecture

• the number of resources, brokers and meta-brokers may vary over time, but the system uses a fixed number of
resource properties and broker capabilities; we refer to these as static attributes further on in the paper,

• the meta-brokers are also characterized by dynamic performances: examples of these are the number of job
requests in the queue and the number of failed or successfully executed jobs of the utilized brokers.

The requirements of this new peer-to-peer architecture and the problem statement of this paper are the following:

• find a suitable and easily maintainable overlay topology,

• minimize or find an optimum number of links for the peers,

• limit the number of concurrent jobs at broker-level (with usage SLAs),

• and define a routing mechanism that efficiently operates the whole architecture by:

minimizing the waiting time of the users,

maximizing the throughput of the system,

and minimizing the number of failed jobs.

4 Overview of existing peer-to-peer overlays
In this section we gather the related overlay topologies and provide a short summary of them. We focus on their
structure, routing and maintenance methods. Before the survey, we state the general definitions. Peer-to-peer networks
typically connect peers (also called as nodes) based on an overlay topology. Peers know each other in the network,
if they are connected by links. Neighbors of a node are the ones that have a link to that node, so they know each
other. Each node in the network has a neighbor list (finger table or routing table) to store information on its neighbors.
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The basic classification of these networks is done according to their structure: they can be structured or unstructured.
Structured overlays build on some geometry and usually have restrictions on the routing and node placement. Routing
defines a mechanism, how messages are forwarded in the network. A lookup (search or query) is an operation that
looks for a data in the network according to the routing mechanism. In general, the following maintenance operations
can be done in these networks:

• joining: a new entity arrives and wants to be connected to the network. We suppose that these entities know how
to contact at least one node in the network, called bootstrap node, which can initiate a process to connect the
entity to the network in order to become a peer. This process directs the entity to some already existing node to
establish a link with it, creates a routing table for this new node, and updates the neighbors routing tables with
its own data.

• leaving: an existing node decides to disconnect from the network. Before disconnecting it needs to notify its
neighbors to delete its data and if necessary add new neighbors to keep the overall connectivity. A special type
of leaving is when a failure occurs on a node. In this case no notification is sent out to the neighbors: some
overlay solutions can deal with this situation by regularly sending keep-alive messages to the neighbors.

4.1 Unstructured overlay topologies
In general, an unstructured network is formed when the overlay links are established arbitrarily. There can be an upper
and lower bound defined for the number of entries in each nodes neighbor table. A joining node may use a random
walk (hops through randomly selected links) starting from a bootstrap node, to find other nodes to fill its neighbor table.
We classify routing mechanisms in unstructured overlays as deterministic or probabilistic. A deterministic routing is
flooding (sending messages to all neighbors), or a rank-based routing that decides the next neighbor according to
an algorithm (more detailed in Section 4). Probabilistic routings are random walks with a predefined TTL (time-
to-live: the maximum number of hops a message can go through) number. Flooding has the disadvantage of too
many message exchanges, while random walks cannot guarantee the success of the search and also have long response
times. An enhanced probabilistic approach is the k-walker random walk, where the query is sent to k randomly selected
neighbors. In this case the routing delay can be reduced.

Beside these general approaches we consider two other solutions for our problem: one is the BitTorrent [bittorrent]
protocol. When a new peer joins a BitTorrent network, it asks the tracker (the only centralized component of the system
that keeps track of the peers currently involved in the search) a list of peers to connect to and cooperate with (usually
randomly chosen). This set of peers forms the neighbor list (peer set) of the new peer. This peer set will be augmented
by peers connecting directly to this new peer. Such peers are aware of the new peer by a request to the tracker. Each
peer reports its state to the tracker regularly, or when disconnecting from the network. When the number of peers
in the peer set of the new peer falls below a predefined threshold, this peer will contact the tracker again to obtain a
new list of peers. Moreover, a peer should not exceed a threshold number of initiated connections among the known
peers at each time (this threshold is usually half of the known peers). As a consequence, the remaining connections
should be initiated by remote peers. This policy guarantees a good interconnection among the peer sets and avoids the
creation of cliques. Each peer knows which pieces each peer in its peer set has. The consistency of this information is
guaranteed by the exchange of messages among the peers, which is governed by two core algorithms: the choke and
the rarest first algorithms. We are interested in the choke algorithm to select the active peers from the neighbor table
to forward messages to for a certain time period. In our case it could be used to penalize peers that never have good
resources for user requests. By changing the default parameters of this algorithm it is possible to increase the size of
the active peer set and the number of optimistic unchokes.

The second is the OurGrid [ourgrid] approach, which is also called as a network of favors. They assign priorities
to peers based on their historical data: peers that contribute more to the community are prioritized when they request
resources. This approach particularly useful for bag-of-tasks applications (their tasks are independent). Furthermore
it would be interesting to see, how the usage of the OSPF internet routing protocol would perform in our architecture.
It is specifically designed to operate with larger networks and does not impose a hop-count restriction. It maintains a
routing table by exchanging link-state information with its neighbors.

4.2 Structured overlay topologies
Figure 2. shows simple lookup examples for each overlays. The detailed description of them follows below.
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Figure 2: Alternatives of structured overlays

In Chord [15] overlay structure peers are organized in ring geometry. Each node has an m-bit identifier, which
is usually chosen by hashing the nodes IP address. Certain keys represent data stored at different nodes. Each key
also has a hashed identifier (ID). IDs are ordered in an identifier circle modulo 2m. Key k is assigned to the first
node, whose ID is equal to or follows k in the ID space. This node is called the successor node of k. Each node
stores information about only a small subset of the nodes in the system in its routing table. The routing process is the
following: the search for a node moves progressively closer to identifying the successor with each step. A search for
the successor of t initiated at node b begins by determining if t is between b and the immediate successor of b. If so,
the search terminates and the successor of b is returned. Otherwise, b forwards the search request to the largest node in
its finger table that precedes t; call this node p. The same procedure is repeated by p until the search terminates. When
a node n joins the network, some keys that were previously assigned to n’s successor are now assigned to n. When
node n leaves the network, all of its assigned keys are reassigned to n’s successor. It has efficient directory operations,
but high maintenance costs. When a node n fails, nodes whose routing tables include n must find ns successor. The
key step in failure recovery is maintaining correct successor pointers. Therefore to support fault tolerance, each node
should maintain a successor-list of its r nearest successors on the ring. If node n notices that its successor has failed, it
replaces it with the first live entry in its successor list. At that point, n can direct ordinary lookups for keys for which
the failed node was the successor to the new successor. As time passes, this stabilization will correct routing table
entries and successor-list entries pointing to the failed node.

Pastry [16] uses a tree geometry, but the peers are mapped to a ring. Each node has a randomly assigned unique
m-bit identifier (typical value is 128). Each node maintains a routing table (R), a neighborhood set (M) and a leaf set
(L). L consists of the L/2 closest peers by node ID in each direction around the circle. M represents the l closest peers
in terms of the routing metric. Although it is not used directly in the routing algorithm, the neighborhood list is used
for maintaining locality principals in the routing table. There is a configuration parameter b (with a typical value is
4), which determines the number of entries in R. The higher this value is, the more fault tolerant the network is. The
routing algorithm assumes that both the node IDs and the keys are sequences of digits with base 2b. Pastry routes
messages to the node, whose ID is numerically closest to the given key. So the routing goes as follows: the node first
checks to see if the search key falls within the range of the IDs covered by its leaf set. If so, the message is forwarded
directly to the destination node, namely the node in the leaf set whose ID is closest to the key. If the key is not covered
by the leaf set L, then message is forwarded to a node in R that shares a common prefix with the key by at least one
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more digit. In certain cases, it is possible that the appropriate entry in the routing table is empty or the associated
node is not reachable, in which case the message is forwarded to a node that shares a prefix with the key at least as
long as the local node, and is numerically closer to the key than the present nodes ID. When a new node n arrives to
join the network, it needs to initialize its state tables, and then inform other nodes of its presence. We assume the new
node knows initially about a nearby Pastry node b, according to the proximity metric that is already part of the system.
Node n then asks b to route a special join message with the key equal to n. Like any message, Pastry routes the join
message to the existing node t whose id is numerically closest to n. In response to receiving the join request, nodes n,
t, and all nodes encountered on the path from n to t (the actual route) send their state tables to n. Finally n informs any
nodes that need to be aware of its arrival. A Pastry node is considered failed when its immediate neighbors in the ID
space can no longer communicate with the node. To replace a failed node in the leaf set, its neighbor in the ID space
contacts the live node with the largest index on the side of the failed node, and asks that node for its leaf table. This set
partly overlaps the present nodes leaf set, and it contains nodes with nearby IDs not present in it. Among these new
nodes, the appropriate one is then chosen to insert into the list, verifying that the node is actually alive by contacting
it. To repair a failed routing table entry, a node contacts first node of the same row, and asks for that nodes entry for
the missing one. In the event that none of the entries in the same row have a pointer to a live node with the appropriate
prefix, the node next contacts an entry in the next row, thereby casting a wider net. Furthermore a node attempts to
contact each member of the neighborhood set periodically to see if it is still alive. If a member is not responding, the
node asks other members for their neighborhood tables, checks the distance of each of the newly discovered nodes,
and updates it own neighborhood set accordingly.

Kademlia [17] uses a symmetrical tree overlay, and its routing is based on XOR metric. The nodes have random
m-bit identifiers (typically 160). The Kademlia algorithm is based on the calculation of a distance, which is a bitwise
exclusive or between two node IDs as an integer. It treats nodes as leaves in a binary tree, with each nodes position
determined by the shortest unique prefix of its ID. The closest leaf to an ID x is a leaf, whose ID shares the longest
common prefix with x. If there are empty branches in a tree, there can be more leaves with the same longest prefix.
The routing table is a binary tree, whose leaves are k-buckets. Each k-bucket contains nodes with some common prefix
of their IDs, where the prefix is the position of the k-bucket in the binary tree. When a new node n joins it is inserted to
the k-bucket according to its ID, when it is full, the bucket is split into two buckets, or the least recently node is pinged
and replaced if it does not reply. To join the network, a node n needs to have a contact to an already participating
node b. n inserts b into its appropriate k-bucket, then performs a lookup for its own node ID. Finally n refreshes all
k-buckets further away than its closest neighbor. Refreshing means picking a random ID in the buckets range, and
performing a node search for that ID. During the refreshes, n both populates its own k-buckets and inserts itself to
other nodes k-buckets as necessary. To cope with node failures and leaving, Kadelmia republishes each key-value pair
once an hour.

CAN (Content-Addressable Network) organizes nodes into a logical d-dimensional Cartesian space (a d-torus).
This space is partitioned into zones, with a node (a peer) serving as owner of the zone. An object o is mapped to a
point p(o) in the space (its key) with a uniform hash function. A node t responsible for o is the one which has p(o)
in its zone. To find t, we compute p(o) and contact any node in the network with a request to route a message to t.
Routing from the contacted node to t boils down to routing from one zone to another in the Cartesian space. If the
point p(o) is not owned by the queried node or its immediate neighbors, the request must be routed through the CAN
infrastructure until it reaches the node in whose zone p(o) lays. Joining a node n corresponds to picking a random
point in the Cartesian space, routing to the zone that contains the point, and splitting the zone with its current owner.
Node removal amounts to having the owner of one of the neighboring zones take over the zone owned by the departing
node. Since many different paths exist between two points in the space, so even if one or more of a nodes neighbors
were to crash, a node can automatically route along the next best available path. Furthermore under normal conditions
a node sends periodic update messages to each of its neighbors giving its zone coordinates and a list of its neighbors
and their zone coordinates. The prolonged absence of an update message from a neighbor signals its failure. Once
a node has decided that its neighbor has died it initiates the takeover mechanism and starts a takeover timer running.
Each neighbor of the failed node will do this independently, with the timer initialized in proportion to the volume of
the nodes own zone. When the timer expires, a node sends a takeover message conveying its own zone volume to
all of the failed nodes neighbors. On receipt of this message, a node cancels its own timer if the zone volume in the
message is smaller that its own zone volume, or it replies with its own takeover message. In this way, a neighboring
node is efficiently chosen that is still alive and has a small zone volume. Increasing the number of dimensions implies
that a node has more neighbors, and the routing fault tolerance improves as a node has more potential next hop nodes
along which messages can be routed in the event that one or more neighboring nodes crash.
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Table 1: Comparison of overlay topologies

Name Topology
Lookup

and Main-
tenance

Routing
table

length and
flexibility

Scalability Fault
tolerance

Flooding
Random walk

OurGrid
BitTorrent

unstructured < TTL,
O(TTL)

O(N),
dynamic

fair
fair
good
good

good

Chord ring O(logN),
O(logN)

O(logN),
fixed good fair

Pastry tree O(logN),
O(logN)

O(logN),
fixed fair fair

Kademlia tree/XOR O(logN),
O(logN)

O(logN),
dynamic fair good

CAN d-torus
O(d ∗
N1/d),

O(d∗N1/d)

O(d),
dynamic good good

Symphony ring/small
world

O(1/k ∗
log2N),

O(log2N)

O(1),
dynamic good fair

The Symphony protocol [19] is a variation of Chord that exploits the small world phenomenon. The nodes are
placed along a ring, and each node has two short links to its immediate neighbors and a few, constant number of
long distance links (this number is not necessary identical for all nodes) built in a probabilistic way – in contrast to
Chord and Pastry, which require a number of links (to fixed positions) which depends on the total number of nodes
in the system. These links are chosen randomly according to harmonic distributions, which favor large distances in
the identifier space in systems with few nodes, and smaller distances as the system grows. During routing a query is
forwarded to the node with the shortest distance to the destination key. Symphony also employs a 1-lookahead ap-
proach. The lookahead list of each node records those nodes, which are reachable through the successor, predecessor,
and long distance links. A node forwards messages to its direct neighbor, which promises the best progression to the
destination. When a new node n joins, it contacts a member b, then chooses a random real number between 0 and 1 as
an ID and it establishes a link to the node responsible for this ID. Then it uses the probability distribution function to
select the long distance links (the number is determined by an estimator), and establish connections to them. When a
node x leaves, all outgoing and incoming links to its long distance neighbors are broken. Other nodes, whose outgoing
links to x were just broken, reinstate those links with other nodes. The immediate neighbors of x establish short links
between themselves to maintain the ring. To tolerate failures, additional redundant short links need to be maintained,
therefore the overhead of redundant links for fault tolerance is significantly less for Symphony than other protocols.

4.3 Summary and discussion
Table 1. shows a summary of the above described overlay architectures. We gathered the relevant performance indi-
cator numbers for each candidate and classified them according to their routing table flexibility (freedom of neighbor
selection), scalability (dramatic increase of the number of nodes makes minimal effect on performance and availabil-
ity) and fault tolerance (recovery on node failures).

We can state that unstructured are more natural candidates for our problem. We have more freedom to deploy our
own routing mechanism in these overlays, and all the related peer-to-peer approaches in Grid information systems
chose an unstructured network. Furthermore placing new nodes with various attributes is completely unrelated to
the overlay topology. On the other hand, we are interested to see, how the well studied structured approaches would
affect our proposed meta-brokering system. CAN promises low maintenance and good resilience, and would leave us
enough space for neighbor selection as well as Symphony. To use these structured approaches we also need to specify
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a partitioning of the attribute space of all meta-brokers. The next subsection deals with this problem.

4.4 Attribute space partitioning in structured overlays
In the general case, we are looking for suitable multi-attribute range queries, and we would like to partition the
attributes according to the selected solution. Latest approaches use locality preserving hashing and space-filling curves
for partitioning. Researchers in the area of Grid information systems have already proposed solutions for similar
problems. MAAN [20] performs multi-attribute range queries on Chord overlay. They use uniform locality preserving
hashing to map attribute values to the Chord identifier space. In this approach an iterative, attribute dominated query
routing algorithm is used to resolve multi-attribute based queries. This means they execute a query for each of the
attributes, then merge the results. This is definitely an inefficient solution. Sword [21] is a resource discovery service
for distributed systems that supports multi-attribute range queries in PlanetLab. It uses an XML-based query language
with Bamboo protocol. It has dedicated DHT servers to compute hash keys for each attribute. Therefore similarly to
the previous solution each attribute needs to be searched separately. LORM [22] is built on a DHT called Cycloid,
which is a lookup efficient constant-degree ring overlay. Instead of collecting resource information of all values of an
attribute in a single node, it lets each node be responsible for information of a specific attribute within a value range
by taking advantage of the hierarchical structure of Cycloid. Though they also compared their solution to MAAN,
Sword and Mercury, and reported lower overhead, they still do searches for each attribute, and tightly coupled to the
Cycloid protocol. Squid [23] proposes range queries for Chord with partitioning based on Hilbert space filling curves.
With this technique they can map d-dimensional attribute space to 1-dimensional index space, which can be mapped
to Chord. MIDAS [24] also uses space filling curves to map a resource with d attributes to an m-bit key. To process a
range query, it transforms the query into a number of search keys using a d-to-one mapping function, then it performs
DHT lookups only for available keys, i.e. search keys that represent available resources. Though it only does searches
for available keys, it still needs to execute more lookups. Mercury [25] researchers found DHTs inappropriate for
range queries, therefore they introduced routing hubs for logical collection of nodes in the system. Queries are passed
to exactly one of the hubs corresponding to the attributes that are queried, while a new data item is sent to all hubs
for which it has an associated attribute. It organizes each routing hub into a circular overlay of nodes and places data
contiguously on this ring: each node is responsible for a range of values for the particular attribute. In this way data
partitioning among nodes can become non-uniform, thus it requires an explicit load-balancing mechanism.

Figure 3: Hilbert SFC approximations

To simplify our problem, we discard real range queries by requiring users to specify minimum attribute values
instead of ranges. In this way we can restrict our attention to multi-attribute queries. Our basic approach to solve
this problem chooses CAN. It is a natural choice, since CAN builds on a d-dimensional Cartesian coordinate space.
We use this space to fill with values of d attributes. Each zone of this space is stored in a chunk of a hash table. A
user request consisting of n attribute-values is converted to a hashed key. To lookup this key, it will be routed in the
network to the node responsible for the zone containing that key. When a new node joins a CAN network, it randomly
chooses a point in the space and contacts the node responsible for that zone, then the zone is spited and the new node
becomes responsible for one half zone. In our approach the point is not randomly defined, because the static attributes
of the new node determines the point in the space. The other maintenance operations can be done in the same way as
in CAN. But the lookup routing needs to be modified to ensure load balance: when the node is found responsible for
the zone of the searched key, an additional routing step is made according to the predefined routing mechanism (to be
defined in the next section), to find the most suitable neighbor for the request.
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The other approach we take into account is a slightly modified usage of the Hilbert space-filling curves in Squid.
With the use of this approach we can map our d-dimensional attribute space into one dimension. The transformation
is done with a recursive refinement algorithm through approximations (shown is Figure 3).

We can use the Squid [23] approach (shown in Figure 4) to map this one-dimensional identifier space to any ring
topology. In Squid the node IDs are randomly generated, and data elements are assigned to the nodes by using the SFC
mapping to construct the data elements index that is placed on the node with the same (or the following closest) ID. In
our case the nodes (Meta-Brokers) already have certain attributes. Therefore we place the n available attribute-values
to the d-dimensional space (n <= d, each attribute is pre-mapped to one field). Then we use the SFC algorithm to
generate its ID, and place the node to the ring according to the ID. In this case we also discard range queries, therefore
user requests can be transformed to search keys with the SFC algorithm and directed with the routing of the chosen
overlay to the node having the minimal required properties.

Figure 4: The approach of Squid to map 2D space to Chord

5 Routing mechanisms for P2P Meta-brokering systems
We define a general routing mechanism that takes into account the special properties of the Grid meta-brokering
architecture, but still fits into the peer-to-peer topologies described above. Our overall architecture need to accomplish
two goals:

• minimize the response time of finding a Meta-Broker peer that utilizes a broker with all the required attributes
of the user request,

• and balancing load among the peers.

5.1 General routing architecture
We propose a general routing architecture shown in Figure 5. A typical routing scenario is the following: a user
submits a job description to a known Meta-Broker. The request is placed into the local queue of the contacted peer.
If the queue size (the local load) reaches a certain threshold, the request will be delegated (described later). When the
Meta-Broker gets the request from the queue, it performs a local matchmaking. If a suitable broker is found, the broker
description is sent back to the user. After the user performed the job submission to the selected broker, it notifies the
Meta-Broker about the result of the submission. When the local match cannot find a suitable broker, the request is
delegated. Delegation means a search in the overlay network. The Meta-Broker looks at its routing table to find a
neighbor with the required attributes. If more peers are suitable, one is selected according to its dynamic information.
If no suitable peer is found, the selection is made according to the current dynamic attributes (this field may contain
a single value, or separate values for each static attribute). After a neighbor is selected, the request is sent to it. The
selected peer placed the request into its queue, and performs the above described matchmaking or routing operation
according to its current state. When a match is found, it is propagated back to the user through the peers participated
in the lookup route, which process also updates information in the seen-jobs table of the peers. This table is used to
ensure usage SLAs: each user is allowed to have a maximum predefined number of requests in the system.
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Figure 5: Routing architecture

Table 2: Family of routing mechanisms

WHAT WHEN WHERE

Routing
mechanisms

PARAMETER:
Heuristics

PARAMETER:
Threshold

PARAMETER:
Prediction or
Ranking function

5.2 Family of routing mechanisms
The general routing architecture described above also defines a family of mechanisms. Though we fixed that two
kinds of information is stored in the routing table (static attributes and dynamic performance data), different queue
thresholds, load values and scheduling policies for neighbor selection can be defined. Table 2. defines the mechanisms
belonging to this family. Each mechanism needs to give an answer for the following questions:

• What to route? – this question means which request should be delegated. If the local queue of the actual peer is
full, the request is always delegated.

• When to route? – this question looks for the answer, what time or under what circumstances should a request be
routed to another peer. If the local matchmaking is failed, of the job has failed for all the matched brokers of the
peer, the request is always delegated.

• Where to route? – the answer tells which peer should be contacted first to start the delegation. In unstructured
networks we are free to choose the neighbor we want to contact, but in structured overlays the routes are usually
fixed. In these cases we only consider this method, when we reached the target peer of the routing and still
could not satisfy the request. We also not that before applying the method the peer always checks, whether the
required static attributes are fulfilled by some neighbors or not. If there are some who does, only those peers are
taken into consideration.

The answer for each question lays in the given parameter. Varying these parameters we can derive different
mechanisms, setups. In the following we define the applicable parameters:

• Heuristics: by default the FCFS (first come first served) policy is used, so the first request in the queue is
processed. The other approach is a backfilling based on the number of attributes of the request: the first request
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Table 3: Routing mechanisms for P2P meta-brokering

WHAT WHEN WHERE

RM1 Heuristic: FCFS Threshold:
70%

Prediction: shortest wait time ac-
cording to queue length

RM2
Heuristic:

Backfilling with
least attributes

Threshold:
70%

Prediction: shortest wait time ac-
cording to queue length

RM3 Heuristic: FCFS Threshold:
70%

Ranking function:
R = (L−LA)2 +(L−LB)2 + ...,
where L is the queue length, and
LA, LB , ... are the number of re-
quests with attributes A, B, ... in
the queue

RM4
Heuristic:

Backfilling with
least attributes

Threshold:
70%

Ranking function:
R = (L−LA)2 +(L−LB)2 + ...,
where L is the queue length, and
LA, LB , ... are the number of re-
quests with attributes A, B, ... in
the queue

with the least number of required attributes is processed.

• Threshold: the local queue length of the peers for the incoming requests is limited. The system need to avoid the
overloading of the peers, therefore this parameter defines a queue length threshold that the number of incoming
requests should not exceed. When a request arrives and the queue length is below the threshold, the request is
put into the queue, otherwise it is delegated.

• Prediction: based on the dynamic information in the routing table the neighbor with the shortest predicted wait
time can be selected according to the local queue lengths or the number of similar requests.

• Ranking function: based on the dynamic data in the routing table or according to additional cashed neighbor
performance data ranking functions can be defined. After computing the ranks, the neighbor with the highest
rank is selected. An example for this ranking function is based on the relation of waiting requests with the same
attributes to the total number of waiting requests of a peer.

Table 3. describes the selected routing mechanisms that we will use in the evaluation of the selected approaches.

6 Conclusion and future work
In this paper we have stated the general requirements of peer-to-peer meta-brokering that aims to serve various user
communities in future Grids. We examined the well studied peer-to-peer overlay topologies, and compared their
general performances. Taking into account meta-brokering properties and requirements, we selected the following
overlays for further evaluation: Flooding, random walk, BitTorrent, CAN, Symphony and we are further interested in
experimenting with the OSPF protocol. We defined a family of mechanisms to be used for delegating user requests
among the peer-to-peer network. Finally we specified four mechanisms of this family that we will apply and evaluate
in each overlay topology. Our future work aims at implementing simulators for the selected peer-to-peer overlays and
mechanisms, and comparing their performance results to conclude in the most appropriate solution for peer-to-peer
meta-brokering in Grids.
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