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Abstract

Resources in the Grid exhibit different availability properties and patterns over time, mainly due to their admin-
istrators’ policies for the Grid, and the different domains to which they belong, e.g. non-dedicated desktop Grids,
on-demand systems, P2P systems etc. This diversification in availability properties makes availability-aware resource
selection, for applications with different fault tolerance capabilities, a challenging problem. To address this problem,
we introduce new availability metrics for resource availability comparison. We further predict resource availability
considering their availability policies. We introduce a new resource availability predictor based on pattern matching
through availabilitypattern recognition and classificationfor resourceinstanceanddurationavailability, and compare
it with other methods. Notably we are able to achieve an average accuracy of more than80% in our predictions.

1 Introduction

With the growing maturity of the Grid technology, the composition, functionality, utilization and scale of compu-
tational Grids continue to evolve. The large scale computational Grid environments and testbeds under centralized
administrative controls, such as, Cern LCG, Tera Grid, Grid’5000, Austrian Grid etc. amass hundreds/thousands of
resources, which vary considerably in terms of their computation power and their availability patterns. A large number
of these resources may be unavailable at any time, mainly due to wide range of policies forwhenandhow to make
their resources available to the Grid. These policies are usually based on resources’ usage patterns and owners’ other
preferences, like shutting down the resources during night. Resources may also be made available to the Grid on
demand [1] and may even be temporarily removed partially or completely from the Grid to accommodate other tasks
or projects.

The Grid schedulers and resource brokers need information about resource availability properties and predic-
tions about their future availability, besides application execution time predictions on them, to compare and select
the most suitable resources. Knowing the resource availability properties,howoften andwhenthe resources become
unavailable, they can be more cogent, especially if this knowledge is coupled with information about application char-
acteristics. For example, the applications that do not implement checkpointing mechanism and have long run times
require resources with more steady and reliable availability, whereas, the applications which require heavy checkpoint-
ing may be scheduled to the resources with a longer availability durations and applications with light checkpointing
and easily replicable processes might even be scheduled on less powerful and more intermittently available resources.
Similarly, considering resource availability patterns, heavy weight checkpointing could be created on demand rather
than periodically, thereby circumventing unnecessary overheads.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1



Predicting the resources’ availability and comparing them on this basis is a hard problem due to its dependency
on multiple factors like resource’s components stability, Grid middleware maturity, varying resource maintenance and
manageability. Particularly, the wide range of policies for resource availability in the Grid makes the problem even
more challenging. To address this problem, we present in this paper resource availability comparison framework and
a new prediction methodPattern Matchingfrom pattern recognition and classifications, for resourceinstance and
lifetimeavailability predictions. We compare resource availability using different metrics, in particular withresource
stability, which better compares resources for their availability as a function of time. Availability trace from Austrian
Grid is undertaken for our present study. Please note that in this paper we use the termsmachineand resource
interchangeably.

We compare the effectiveness of our prediction technique by designing and building different predictors that
take advantage of different availability properties. Results from the prototype implementation of our system in
ASKALON [15] show that more specific information is critical for better predictions. On average, we are able to
get more than95% accuracy in ourinstanceavailability predictions and more than75% accuracy indurationpredic-
tions.

2 Austrian Grid Availability Trace

Here we describe the availability trace of resources in a large-scale Grid: Austrian Grid. Austrian Grid is a nation-
wide, multi-institutional, -administrative and -VO Grid platform, consisting of28 Grid-sites geographically distributed
in Austria, and collectively there are over1.5 thousand processors. To better expose resource availability properties,
we include (external) knowledge of high level resource availability policies for the Grid. Based on these policies,
we identify three main classes of resources in Austrian Grid: thededicated resources, which are meant to be always
available to the Grid users; thetemporal resources, the resource from the university labs, are available in the Grid as
long as they are turned on; and theon-demand resources, which are made available to the Grid only on demand from
the Grid users for large scale jobs or experiments. The names of the resource classes reflect their respective availability
policies.

The complete resource availability trace, in which each event (for every individual Grid-sites) separated by5
minutes time represents resource state (available or unavailable), was analyzed for a duration of approx. one year from
mid-June 2006 to mid-April 2007. Altogether this trace is comprised of more than23 million events that occurred on
the whole Austrian Grid. In the presented work, a resource is considered available if it is turned on and accessible
remotely (e.g. through GRAM), otherwise it is considered unavailable.

3 Resource Availability Comparison

The main purpose of resource comparison based on the availability properties is to provide the resource broker and
meta-scheduler a ranking of Grid resources to assist the optimized resource selection process for advance reservations
and execution planning respectively. We compare the Grid resources for their availability in two dimensions: the
static availability comparison through MTBF (mean time before failure) and MTR (mean time to reboot); the dynamic
availability comparison through resource stability (for different job durations), and the resource dependability (as a
function of time). We argue that the later two metrics are more suitable for resource comparisons as they include better
probabilities approximations about resources’ availability. These are described in the following sections.

3.1 Resource Stability

Stability of a Grid resource for a time duration reflects its suitability for executing jobs of that duration. We define
stability (of availability) of a Grid resource for a durationtk, having a set ofn durationst = {t1, t2, t3, ..., tn}, as:

ζ(tk) =
∑

∀ti≥tk

⌊
ti
tk

⌋
× P (ti)

whereP (ti) denotes the probability of durationti for the resource.
We present the resource stability comparison at resource class level in Figure 1. The on-demand resources have the
lowest stability while the dedicated resources have the highest. For job duration of60 minutes the dedicated resources
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have a stability of44 (more than8 times that of on-demand resources), and temporal resources exhibit that of11
(more than2 times that of on-demand resources). The space limit does not allow us to present individual resource
comparisons here.
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Figure 1: Resource stabilities for jobs of different durations at resource class level

3.2 Resource Consistent Availability over Time

In contrast to existing works [9, 4] which use only simple availability properties like daily and hourly availability to
compare resources, we consider mean duration of availability as MTBF and mean duration of unavailability as MTR
for the Grid resources too. Duration of availability of Grid resources is of critical importance for execution of long
jobs. Likewise, duration of unavailability is also an important measure for ahead of time planning for job executions as
in advance reservations. We define the duration of availability as the time elapsed between the occurrence of resource
turnedon or recovered after the failure and again turnoff/failed. Likewise, we formulate our definition for duration
of unavailability. It is noteworthy that our definitions coincide with that of time to repair by [14, 13] and of recovery
time used in [6]. Figure 2 shows average availability duration(MTBF), and average unavailability durations(MTR), for
each of the individual resource classes. The MTBF(MTR) of resources at Grid level, is observed about4 days(1008
min). At resource classes level, these estimates clearly give a better view of resource duration availability. Intuitively,
the class of dedicated resources show the highest (of three classes) MTBF of7 days on average, with max.(min.) of
42 days (1609 min). These also exhibited the lowest (of three classes) MTR of45 min., with max.(min.) of89 (26)
min. Temporal resources, at class level showed almost equal MTBF and MTR and highest MTR of the three classes.
They showed an average MTBF and MTR of18 hrs. Max.(min.) of MTBF were77(6) hrs., whereas those of MTR
are5149(381) min. On demand resources on average showed the lowest (of three classes) MTBF of269 min. and an
MTR of 2944 min. We found on-demand resources with higher MTR than temporal resources. The SD was quite low
for both MTBF and MTR in case of dedicated resources, whereas these were quite high for temporal and on-demand
resource classes. It is also important to note that the failure durations may include the night hours during which the
system administrators of the Grid sites are not available, and the durations for which the machines are automatically
turned off. Furthermore, it may also include the durations for Grid-sites’ maintenance/repair etc.

3.3 Resource Dependability

The resource dependability describes the extent to which a resource can be depended for being available. We define
resource dependability as a function of time duration, as its probability of availability for a given time duration or
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Figure 2: MTBF and MTR comparison of resources in three resource classes

higher. For a resource exhibiting a set of different consistent life timesl = l1, l2, l3...lm

η(t) =
m∑

i

P (li) | li > t
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Figure 3: Dependability comparison of three resource classes
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A comparison of resource dependability at the level of resource classes is shown in Figure 3 as a sum of probabilities
of the different lifetimes(t) and their greater lifetimesP (x ≥ t). On average, classes of dedicated, temporal and
on-demand resources have a maximum dependability of approx.65 days,4 days and1000 min. respectively. It is
interesting to note that dedicated resources on average have 35% dependability for a job lasting a little more than a
day. The temporal resources are50% dependable for the jobs of6 hours or more, and on-demand resources have50%
dependability for the jobs lasting more than90 min.

4 Resource Availability Prediction

In this section we present our resource availability prediction methods. We employ three methods frompattern recog-
nition and classificationfor resource availability predictions, to serve resourceinstanceor point availability anddu-
ration availability predictions: theBayes’ Rule, Nearest Neighbor RuleandPattern Matching. The motivation behind
employing these methods is the shape of the auto-correlation function of availability of the three resource classes
(figure not shown), which indicates that there are strong patterns in the availability of the resources.Instance or point
availability describes resource availability at a certain point of time; in our presented work it refers to the next mon-
itoring instance. Whereas, the duration availability describes resource availability for a certain time duration, in our
presented work it refers to the immediate next duration of a certain time span. These methods exploit different pat-
terns of resource availability to serve its future availability predictions. Below we describe some patterns in resource
availability at resource class level.

4.1 Patterns in Resource Availability

We observed different resource availability patterns over time– in a day and over different days of week. Figure 4
depicts diurnal resource availability patterns in a day; availability peaks during8a.m. to8p.m. and recesses during the
remaining hours. The maximum availability was found at4p.m.,2p.m.,3p.m. and the minimum at4a.m.,8a.m.,4a.m.
respectively for the three classes. We observed interesting patterns at resource class level as well at Grid level. The
availability remains comparatively in a small range during the night hours with the minimum value between4a.m. and
8a.m. This is the time when most of the resources are turned off or given a restart. After the minimum value it starts
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Figure 4: Resource hour-of-the-day availability at resource class and Grid level
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increasing towards the peak value (except one decrease in dedicated resources), and from the maximum it decreases
towards a certain level to be maintained till the minimum occurs.
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Figure 5: Resource availability patterns over different days of week

The availability patterns on28 machines (machine names are irrelevant) over different week days are shown in
Figure 5. Two classes of patterns can be visualized from this figure; first, with lower availability at week ends, and
higher during the working week days. This class has an increasing availability till Tuesday or Wednesday and then
decreasing till weekend. Second, with higher availability on weekends and lower during the working weekdays. This
class has a decreasing availability till Wednesday and then again increasing availability till Saturday.

The average SD over different hours of the day was4.16 as compared with that of1.37 on a specific hour of
the day. Moreover, at Grid level, an average SD over different week days was12.3 and that of6.6 was observed in
availabilities on specific week days. This remarkable lower SD in availabilities on a specific day of the week than that
on all week days, indicates strong availability pattern on specific week days. In sequel, lower SD in availabilities on
specific hour of the day than that on all hours, shows similar availability patterns over specific hours of the day. In the
following sections we present different prediction methods we employed.

4.2 Prediction Methods

In this paper we present a new prediction method frompattern recognition and classification: pattern matchingand
compare the results with our previous work in [8]. The pattern matching is a well recognized technique from pattern
recognition and classification [5]. It considers resource’s recent patterns of availability of certain duration and searches
for the same from the past trace. It predicts the resource behavior as its most likely behavior subsequently after
the same patterns in the past. Forinstanceavailability prediction the first subsequent resource status is considered,
whereas forduration prediction the subsequent duration of interest is taken into account. We employBoyer-Moore
String Matchingalgorithm withbad-character heuristicandgood-suffix heuristic[5] for pattern matching. The main
advantage of this algorithm is that it has a complexity just ofO(n), and is much faster than similar others.

5 Performance Evaluation

This section describes the evaluation results for the prediction methods presented in the last section. We evaluated
these methods for their prediction accuracy, calculated asAccuracy =(no. of true predictions)/(total number of
prediction queries)represented as percentage. In case of instance availability prediction, a prediction is treated true
if the resource immediate next status is the same as predicted, otherwise it is considered false. In case of duration
availability prediction, prediction is treated as true if a resource is predicted to be available for a certain immediate
duration and resource is available for that duration or longer, otherwise it is considered false. In case when resource is
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Figure 6: Resource instance availability prediction through Bayes’ rule, NN-rule and pattern matching: Prediction
accuracy comparisons of the three resource classes

available for a duration lesser than the predicted, the accuracy of prediction is calculated as the ratio of actual available
duration to the predicted. Furthermore, the accuracy is recorded for different predictors which use different features
from the feature vector described in [8].

5.1 Instance Availability Prediction

We made a greedy evaluation of accuracy of predictions made through Bayes’ rule [8]. The accuracy was evaluated
for all the resources in every resource class and accuracy at class level is presented by taking their average. For one
resource, the prediction was evaluated on all the days of monitoring period (more than 300) and the accuracy was
recorded on daily basis, where prediction query time in a day was selected at random. Thus, every resource was
evaluated for more than 300 times, while the class-level daily accuracy was averaged from all the resources in the
resource class. The daily accuracy of predictions for three resource classes using predictor hourOfDaycur [8] is
presented in Figure 6(A). For dedicated resources, the average accuracy was97%. Accuracy for temporal resources
averaged to90% and on-demand resources exhibited that of94%. We found for the all three classes that prediction
accuracy decreases as more historical data distant from the prediction query time is included in calculating the priories.

A similar greedy setup was made for evaluation of instance availability predictions through NN-rule [8], as the
same for Bayes’ rule. Prediction accuracy results for the three resource classes using NN-rule are depicted in Fig-
ure 6(B). The average accuracies were recorded as99.98%, 82.4% and98.4% respectively for dedicated, temporal
and on-demand resources at class level. The very high prediction accuracy for dedicated and on-demand resources
is due to their high MTBF and high MTR, respectively . NN-rule gives higher accuracies for instance availability
predictions for all three resource classes as compared with those through Bayes’ rule.

Accuracy of instance availability predictions through pattern matching was also evaluated through a similar test
phase. The accuracy results for the three resource classes are shown in Figure 6(C). Pattern matching showed94.41%
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accuracy for dedicated resources, while the same for temporal and on-demand resources was68.13% and73.34%
respectively. The lower accuracy of temporal resources is due to a higher variation in their patterns of (un)availability
over time. The pattern matching yielded the least accuracy of78.63% at Grid level, as compared with the three
methods.

5.2 Duration Availability Prediction

Prediction accuracy results of the the three methods, for duration availability, are evaluated extensively through a
series of experiments. For every resource, predictions were evaluated for the time durations starting from10 min. to
24 hrs. with the increments of5 min. Prediction for every duration was repeated100 times, where date and time
were randomly selected from the resource monitoring duration. These100 repetitions were later averaged to record
accuracy for that duration for the selected resource. Average accuracy for each time duration on all resources in a
resource class, was recorded as accuracy of the class for that duration. The prediction accuracy of Bayes’ rule with
the predictor dayOfWeek using different amount of trace data, for the three resource classes is shown in Figure 7(a).
We have noted that the prediction accuracy decreases as amount of historical data more distant from the prediction
query time is included while calculating priories. This was also conformed by ACF (auto-correlation function) of
availability durations(not shown here). The highest accuracy of duration availability predictions was observed in class
of dedicated resources, which is due to their better stability for jobs of different durations, as shown in Figure 1. Bayes’
rule exhibited a better accuracy of duration availability predictions for temporal resources than on-demand resources,
which shows that on-demand resources were made available for quite different time durations.

We present the accuracy of predictions for duration availability through NN-rule for the time durations of 10min-
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Figure 8: Resource selection risk analysis

24hrs. The Figure 7(b) presents the prediction accuracy results at resource class level. Dedicated resources, as in all
other evaluations showed the highest accuracy, within the range of79%−99%. NN-rule prediction accuracy increases
from a minimum of64% to a maximum of93% for temporal resources, whereas, in case of on-demand resources,
it increases from a minimum of36% to a maximum of100%. The increase in prediction accuracy by NN-rule, for
temporal and on-demand resources is as expected– because resources in these two classes were available for relatively
shorter time durations and NN-rule made availability predictions with higher accuracy for longer durations than for
smaller durations.

The average accuracy of predictions for different durations, through pattern matching, using patterns of different
lengths, are shown in the Figure 7(c). We observed accuracies of93.18%, 69.39% and75.56% for dedicated, temporal
and on-demand resources respectively. We observed an increase in the accuracy when the pattern length was increased.
This shows that resources exhibit more consistent behavior over longer time durations than shorter durations. Pattern
matching resulted in better accuracy than NN-rule for duration predictions.

5.3 Resource Selection Risk Analysis

Let {α1, ..., αm} be a set ofm candidate resources. Thelossfunctionξ(αi|τj) describes the loss incurred for selecting
resourceαi when resource state isτj . In this study, we compute thelossas: loss = lαi + Tαk

− g(αi, αk). Here
lαi represents time lost on resourceαi in case of its failure,Tαk

represents total time (including overheads) taken
to execute job on next potential resourceαk, andg(αi, αk) represents expected time gain in selectingαi over αk.
Suppose that we select one propertyyi from the feature spacey and that we contemplate to select resourceαi. If
the true state of the resource isτj and it is predicted to beτi then we will incur a loss ofξ(αi|τj). SinceP (τj |yi)
is the probability that the true state of the resource isτj , the expected loss with selecting resourceαi is merely:
R(αi|yi) =

∑2
j=1 ξ(αi|τj)P (τj |yi). In decision-theoretic terminology, an expected loss is called a risk [5], and

R(αi|yi) is called theconditional riskfor selecting a resource propertyyi from feature vectorx. Our objective is
to minimize the overall risk that is given by

∫
R(α(yi)|yi)p(yi)dx, whereα(yi) represents selection of resourceα

when featureyi is selected,d is our notation ford-spacevolume element and integral intends over the entire feature
space. To minimize the overall risk, we compute the conditional risk for all them resources and select resourceαi for
whichR(αi|yi) is minimum. We evaluated the selection-risk for one activity of each of the two real world applications
Wien2K [7] and Invmod [7] for8 Grid-sites. The comparison of these Grid-sites based on this risk is shown in the
Figures 8(a) and 8(b) respectively.

6 Related Work

Several other studies characterize or model availability in different environments like cluster of computers [3], multi-
computers [14], meta-computers (also called desktop Grids) [10], Grid [12], [2], super-computers [14], and peer-to-
peer systems [9]. Most of these studies are about early systems considering only short term availability data, and
ignoring machine availability policies. The two most closely related studies to ours are [2] and [12]. These works
consider the availability characteristics at Grid level only, whereas we identify different classes of resources based on
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their policies of availability in the Grid, and analyze their properties on the class level, and achieve better representative
aggregates. Another closely related study to ours is [17] that analyzes resource availability through CPU failures, and
finds its implications on large-scale clusters. We further compare resources based on their daily availability, hourly
availability, MTBF, MTR, their dependability for different jobs and are the first to compare resources based on their
stability for jobs of different durations.

Predictions from availability models give probability of resource in available state and are most of the times
insufficient to decide whether the resource will be available or not [8]. Works in [11], [16] and [12] have made
predictions based on previous weekday or weekend only, and have got moderate accuracy in their predictions. In
contrast we employ methods from pattern recognition and classification, which exploit knowledge from our resource
availability characterization phase, and takes into account patterns from resource past behavior as well as its current
behavior, and yield very promising results.

7 Conclusion

Besides that the Grid technology is getting more matured day by day, different policies for resource availability in the
Grid, and resources’ workingstability raise serious issues about their suitability for different jobs. In this work we
compare resources based traditional and new metrics- their MTBF, MTR in general and theirstability anddepend-
ability for jobs of different durations in particular. Different comparison criteria suit to different needs. We argue the
later two metrics better compare the resources considering the job durations. Dedicated resources revealed the highest
stability for all jobs of different durations and showed the highest MTBF and the lowest MTR, the converse it true for
on-demand resources. Stability of temporal resources falls in the mid range of other two resource classes, and they
showed an almost equal MTBF and MTR. Next, we find patterns in resource availability and make resource instance
and duration availability predictions by using three methods frompattern recognition and classification; Bayes’ Rule,
Nearest Neighbor Rule and Pattern Matching. We extensively evaluated the accuracy for these methods using different
predictors and different amount of historical data. On average, more than90% and70% accuracy is found for instance
and duration predictions respectively, when minimum of historical data was used.

As future work, we will try to integrate resource computational metrics (MFlops and others) with availability
metrics to come up with a unified metric to compare the resources in a generic way as well. We would also like
to validate our resource availability prediction methods using availability traces from other Grids. We also plan to
evaluate improvements in job execution performance through availability aware resource selection, and availability
aware data storage.
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