
Developing Secure Chemical Programs with Aspects

Alvaro Arenas
A.E.Arenas@rl.ac.uk

STFC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK

Jean-Pierre Banâtre, Thierry Priol
{Jean-Pierre.Banatre, Thierry.Priol}@inria.fr

INRIA/IRISA
Campus de Beaulieu, 35042 Rennes cedex, France

CoreGRID Technical Report
Number TR-0166
August 31st, 2008

Institute on Knowledge and Data Management

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265



Developing Secure Chemical Programs with Aspects

Alvaro Arenas
A.E.Arenas@rl.ac.uk

STFC Rutherford Appleton Laboratory
Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK

Jean-Pierre Banâtre, Thierry Priol
{Jean-Pierre.Banatre, Thierry.Priol}@inria.fr

INRIA/IRISA
Campus de Beaulieu, 35042 Rennes cedex, France

CoreGRID TR-0166

August 31st, 2008

Abstract

This paper studies security engineering of distributed systems when following the chemical-programming paradigm,
represented here by the High-Order Chemical Language (HOCL). We have analysed how to model secure systems
using HOCL. Emphasis is on modularity, hence we advocate for the use of aspect-oriented techniques, where security
is seen as a cross-cutting concern impacting the whole system.

We show how HOCL can be used to model Virtual Organisations (VOs), exemplified by a VO system for the
generation of digital products. We also develop security patterns for HOCL, including patterns for security properties
such as authorisation, integrity and secure logs. The patterns are applied to HOCL programs following an aspect-
oriented approach, where aspects are modelled as transformation functions that add to a program a cross-cutting
concern.

1 Introduction
This paper studies security engineering of distributed systems when following the chemical-programming paradigm,
represented here by the High-Order Chemical Language (HOCL) [2]. We have analysed how to model secure systems
using HOCL. Emphasis is on modularity, hence we advocate for the use of aspect-oriented techniques, where security
is seen as a cross-cutting concern impacting the whole system.

Chemical programming gets its inspiration from the chemical metaphor. In HOCL, computation is seen as reac-
tions between molecules in a chemical solution. As a high-order programming language, reactions rules are molecules
that can be manipulated like any other molecules, i.e. HOCL programs can manipulate other HOCL programs. Reac-
tions occur locally between few molecules that are chosen non-deterministically.

The structure of the paper is the following. Section 2 introduces HOCL. Then, we describe in Section 3 the use
of HOCL in the specification of virtual organisations, exemplified by a system for the generation of digital products.
Section 4 presents security patterns for chemical programs. Next, section 5 shows how to apply the security patterns
by using aspect-oriented programming. Section 6 relates our work with others. Finally, section 7 concludes the paper
and highlights future work.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1



2 The High-Order Chemical Language
A chemical program can be seen as a (symbolic) chemical solution where data is represented by floating molecules
and computation by chemical reactions between them. When some molecules match and fulfill a reaction condition,
they are replaced by the body of the reaction. That process goes on until an inert solution is reached: the solution
is said to be inert when no reaction can occur anymore. Formally, a chemical solution is represented by a multiset
and reaction rules specify multiset rewritings. In this paper we use the High-Order Chemical Language HOCL [2], an
extension of the γ-calculus [1]. Here, we introduce the main features of HOCL, referring the reader to [2] for a more
complete presentation.

In HOCL, every entity is a molecule, including reaction rules. A program is a molecule, that is to say, a multi-
set of atoms (A1, . . . , An) which can be constants (integers, booleans, etc.), sub-solutions (〈M〉) or reaction rules.
Compound molecules (M1,M2) are built using the associative and commutative operator “,”, which formalises the
Brownian motion and can always be used to reorganise molecules.

The execution of a chemical program consists in triggering reactions until the solution becomes inert.
A reaction involves a reaction rule replace-one P by M if C and a molecule N that satisfies the pattern P and the

reaction condition C. The reaction consumes the rule and the molecule N , and produces M . Formally:

(replace-one P by M if C), N −→ φM
if P match N = φ and φC

where φ is the substitution obtained by matching N with P . It maps every variable defined in P to a sub-molecule
from N . For example, the rule in

〈0, 10, 8, replace-one x by 9 if x > 9〉
can react with 10. They are replaced by 9. The solution becomes the inert solution 〈0, 9, 8〉.

A molecule inside a solution cannot react with a molecule outside the solution (i.e. the construct 〈.〉 can be seen
as a membrane). A HOCL program is a solution which can contain reaction rules that manipulate other molecules
(reaction rules, sub-solutions, etc.) of the solution.

In the remaining of the paper, we use some syntactic sugar such as declarations let x = M1 in M2 which is
equivalent to M2 where all the free occurrences of x are replaced by M1. The reaction rules replace-one P by M if C
are one-shot: they are consumed when they react. Their variant denoted by replace P by M if C are n-shot, i.e. they
do not disappear when they react.

There are usually many possible reactions making the execution of chemical programs highly parallel and non-
deterministic. Since reactions involve only a few molecules and react independently of the context, many distinct
reactions can occur at the same time.

An important feature of HOCL is the notion of multiplets [2]. A multiplet is a finite multiset of identical elements.
In this paper, we limit ourselves to multiplets of basic values (integers, booleans, strings). In HOCL multiplets are
defined and matched using an exponential notation: if v is a basic value then vk (k > 0) denotes a multiplet of k
elements v. Likewise, for variable x having a basic type, notation xk denotes a multiplet of k elements. We could also
have variables in the exponentation of constants or patterns, indicating that the size of a multiplet becomes dynamic.

3 Virtual Organisations in HOCL
A Virtual Organisation (VO) can be seen as a temporary or permanent coalition of geographically dispersed organi-
sations that pool resources, capabilities and information in order to achieve common goals. VOs are given attention
by researchers within a wide range of fields, from social anthropology and organisational theory to computer science.
Their importance resides in providing an abstraction to represent organisational collaborations, a topic of fresh interest
given the current exploitation of Internet technology to create virtual enterprises [3], or the sharing of resources across
different organisations as envisaged by Grid computing [6].

We model here a VO with the goal of generating products resulting of the collaboration of several dispersed
organisations, which posseses the following characteristics:

1. The VO aims at producing some complex, sophisticated ’digital’ product (e.g. a software system, or some
multimedia product).

CoreGRID TR-0166 2



2. The VO consists of a defined number of members (organisations), each one contributing to the generation of
products.

3. The product generation is considered a knowledge-intensive and content-intensive activity. VO members depend
on and need access to several sources of knowledge as well as digital content assets, which they assemble/use
to create the product.

4. The production process is structured along some workflow (e.g. a software production process, or a Web/content
publishing process), and foresees several phases. Policies may be applied to control access to the assets, which
may vary according to the phase or state in the project workflow.

For our scenario, we are assuming a very simple workflow depicted in Figure 1. The workflow consists of four
phases. In the Edit phase, work is distributed among all VO members contributing to the generation of a product. In
the Merge phase, parts of the product created by each VO member are combined in order to create a global product.
Once the global product is created, it is passed to the VO members in the Validate phase, so they can ”validate” the
product. Finally, the process finalises if the product is approved by a determined number of members by sending the
product to Publish.

Figure 1: Workflow process for the VO supporting the generation of a product.

Chemical programming uses chemistry as a methaphor. For the case of our VO for product generation, the whole
VO is modelled as a solution, which contains sub-solutions Si:〈· · · 〉 that represent the VO members. The product
under construction is modelled as a molecule that could be tagged by another molecule representing the product
status (EDITING, EDITED, GENERATE, VALIDATING, VALIDATED, ACCEPTING and PUBLISHED). Workflow
operations (edit, merge, publish, etc.) are represented as reactions. Table 1 summarises the chemical modelling of
the main elements of our VO.

VO Concept Chemical Representation
VO Solution
VO Member Sub-solution
Workflow Operation Reaction
Product Molecule
Product Status Molecule

Table 1: Chemical representation of the main elements of a virtual organisation for the collaborative generation of
products

Figure 2 shows the HOCL program for generating a product. It consists of a solution containing all VO members
—represented as subsolutions Si for i = 1, · · · , k, and molecule GlobalProduct, the product to be published. The
reaction rule edit distributes the global product to all VO members. Here we are assuming the existence of k VO mem-
bers, where k is a predefined integer constant. Reaction merge generates a local product, and marks the contribution of
the corresponding member to the product generation by adding constant GENERATE to the global solution. It also in-
cludes operation Merge, which combines both the local and global products. The edition of a product finalises when
VO members have contributed, which is represented by having NumMerges(k) copies of molecule GENERATE.
Function NumMerges(k) is a domain-specific function indicating the number of copies needed to generate a prod-
uct; if it is the identity function, i.e. equal to k, all participant solutions must contribute to the product generation.
Note that we are exploiting here the existence of multiplets in HOCL: molecule GENERATENumMerges(k) acts as a
synchronisation barrier indicating when reaction valid can occur. Reaction valid distributes the final GlobalProduct
among the members in order to get their approval. Reaction accept allows a VO member to vote for the approval
of the product, which results in adding molecule ACCEPTING in the global solution. The whole process finalises
as soon as MinApproval(k) VO members approve the final product by executing reaction publish, which sends the
final product to publishing. Funtion MinApproval(k) is an abstraction of the protocol used to decide when to publish
a product; for instance, if it is equal to ceil(x/2), we would be using a majority vote protocol.

CoreGRID TR-0166 3



let publish = replace GlobalProduct,ACCEPTINGx,GENERATEy

by PUBLISHED:GlobalProduct
if x ≥ MinApproval(k) ∧ y = NumMerges(k)

in
let accept = replace S: 〈VALIDATING:Product〉

by S: 〈VALIDATED〉 ,ACCEPTING
if AgreeProduct(Product)

in
let valid = replace S: 〈EDITED〉 , GlobalProduct,GENERATEy

by S: 〈VALIDATING:GlobalProduct〉 , GlobalProduct,GENERATEy

if y = NumMerges(k)
in
let merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct),GENERATE
if FinishProduct(Product)

in
let edit = replace S: 〈〉 , GlobalProduct

by S: 〈EDITING:GlobalProduct〉 , GlobalProduct
in
〈S1: 〈〉 , · · · , Sk: 〈〉 , GlobalProduct, edit, merge, valid, accept, publish〉

Figure 2: HOCL Program for a simple content management system

4 Security Patterns for Chemical Programming
A design pattern is a general reusable solution to a commonly occurring problem in software design [7]. For instance,
object-oriented design patterns typically show relationships and interactions between classes or objects, without speci-
fying the final application classes or objects that are involved. Design patterns can be applied to achieve security goals
such as confidentiality, integrity or availability [12].

In this section we define security patterns for HOCL programs. These patterns serve as templates that guide the
definition of security aspects by instantiating them with domain-specific information. We define patterns for important
security properties, namely Authorisation, Integrity, and Security Logs.

4.1 Authorisation Pattern
Authorisation concerns with the verification that an entity can perform a particular action. In the context of chemical
programs, authorisation refers to the verification that a reaction could occur in a solution. The authorisation pat-
tern, described in Figure 3, indicates that whenever a solution S reacts using reaction R, the authorisation condition
Authorised(S,R) holds.

authorisation(S, R) =̂ let R = replace P by M if C ∧Authorised(S, R)
in S:〈ω, R〉

Figure 3: HOCL Pattern for Authorisation

The authorisation condition is considered as a generic condition that should be instantiated with domain-specific
information. In this paper, we are interested in defining authorisation for three particular cases of attributed-based
authorisation: role-based access control, authorisation based on trust values, and authorisation based on environmental
conditions such as date, time, etc.

In the case of role-based access control, we associate solutions to roles and indicate which reactions can be ex-
ecuted by roles. Let SolutionRole be a predicate associating a solution with a role, and RoleReaction a predicate
associating a role with a reaction. In this case the Authorisation condition takes the form SolutionRole(S,Rol) ∧
RoleReaction(Rol, R).

In the case of authorisation based on trust values, we assume there is a function TrustValue(S) returning the trust
value associated to a solution S. The Authorisation condition is simply a predicate comparing the trust value of a
solution with a particular value.

CoreGRID TR-0166 4



In the case of authorisation based on environmental conditions, we assume there are predicates such as Date and
Time which could restrict when a reaction occurs.

4.2 Integrity Pattern
Integrity requirements prescribe that information is changed only in a specified and authorised manner. Integrity is
violated when an employee (accidentally or with malicious intent) deletes important data files, when a computer virus
infects a computer, or when someone is able to cast a very large number of votes in an online poll, among others.

Let R = replace P by M if C be a reaction. The integrity condition Integrity(P,M) is true if the transformation
of pattern P by M is considered a valid one. In the context of chemical programs, integrity refers to the verification
that the changes resulting from a reaction are consistent with the Integrity predicate. The integrity pattern, de-
scribed in Figure 4, indicates that whenever a solution S reacts using reaction R, both the authorisation condition
Authorised(S,R) and the integrity condition Integrity(P,M) must hold.

integrity(S, R) =̂ let R = replace P by M if C ∧Authorised(S, R) ∧ Integrity(P, M)
in S:〈ω, R〉

Figure 4: HOCL Pattern for Integrity

4.3 Security Log Pattern
In the case of security-critical operations, it might be required to maintain a security log of such operations. In
chemical programming, this corresponds to storing in a log a reaction as well as the changes it has produced. Let R =
replace P by M if C be a reaction. The security log pattern, described in Figure 5, indicates that whenever reaction
R happens, it is stored in solution Log a molecule with information about the solutions and molecules participating in
R. The Log solution can be seen as a trusted third party in charge of storing and maintaining the security log.

logging(R) =̂ let R = replace P, Log:〈ω〉 by M, Log:〈ω, R:P :M〉 if C
in S:〈ω, R〉

Figure 5: HOCL Pattern for Security Logging

5 Security Aspects for Chemical Programming
Aspect-oriented programming (AOP) is a programming paradigm that explicitly promotes separation of concerns. In
the context of security, aspects mean that the main program should not need to encode security information; instead,
it should be moved into a separate, independent piece of code [15].

AOP is based on the idea that computer systems are better programmed by separately specifying the various
concerns of a system and some description of their relationships, and then relying on mechanisms in the underlying
AOP environment to weave or compose them together into a coherent program. The goal of AOP is to make designs
and code more modular, meaning the concerns are localised rather than scattered and have well-defined interfaces with
the rest of the system. This provides the usual benefits of modularity, including making it possible to reason about
different concerns in relative isolation, making them (un)pluggable, amenable to separate development, and so forth.

This section introduces the main concepts of aspects and relates them with chemical programming. We then show
how to apply aspects to include security in our VO for product generation.

5.1 Basic Concepts on AOP
Cross-cutting concerns are concerns whose implementation cuts across a number of program components. This re-
sults in problems when changes to the concern have to be made —the code to be changed is not localised but is in
different places across the system. Cross-cutting concerns can range from high level notions like security and quality

CoreGRID TR-0166 5



of service to low-level notions such as caching and buffering. They can be functional, like features or business rules,
or nonfunctional, such as synchronization and transaction management. The following are the main terminology used
in AOP:

• Join point: Point of execution in the application at which cross-cutting concern needs to be applied. In the case
of chemical programming, join points could be associated with reactions where the concerns need to be applied.

• Advice: This is the additional code that one wants to apply to an existing model. In the case of chemical
programming, advice are applied to joint points (reactions) by adding/replacing some of the components of the
reaction.

• Aspect: An aspect is an abstraction which implements a concern; it is the combination of a join point and an
advice.

• Weaving: The incorporation of advice code at the specific joint points. There are three approaches to aspect
weaving: source code pre-processing, link-time weaving, and execution-time weaving.

There is an additional concept called the Kind of an Aspect indicating if an advice is applied before, after, or around
a join point. Since there is not a notion of sequentiality (execution order) in a chemical program, we do not exploit
this feature. All aspects for chemical programming can be seen as around aspects.

5.2 Aspects for Chemical Programming
In this paper we have followed a code pre-processing technique to weave aspects in a chemical program. To do so, we
represent aspects as a collection of transformation functions ΨCi , each one modelling a different cross-cutting concern
Ci. Each function ΨCi is applied to a reaction and returns a modified version of the reaction that has been transformed
according to the aspect.

Let Reaction denote the set of reaction rules and Σ denote the state of a chemical program. State here refers to
the solution and molecules participating in a program. The signature of a transformation function ΨC is defined as
follows:

ΨC :Reaction× Σ → Reaction

As a way of illustration, let us define transformation ΨRBAC that applies the role-based authorisation concern to a
reaction, indicating that a solution could react using a particular reaction if it is playing a role in the system. Function
ΨRBAC takes as input a reaction, a solution name, and a role name, producing a new version of the reaction where the
condition has been strengthened with the predicates SolutionRole and RoleReaction , as presented in the authorisation
pattern defined in sub-section 4.1. Upper part of Figure 6 shows the definition of the transformation function ΨRBAC .
Let us assume that the merge reaction in the VO system presented in Figure 2 can react when the solution containing
it is playing the Editor role. Lower part of Figure 6 shows the result of applying the transformation function ΨRBAC

to merge.

ΨRBAC :Reaction× SolutionName×RoleName → Reaction

∀R:Reaction, S:SolutionName, Rol:RolName
R = replace P by M if C →

ΨRBAC(R, S, Rol) = R = replace P by M
if C ∧ SolutionRole(S, Rol) ∧RoleReaction(Rol, R)

ΨRBAC(merge, S, Editor) =
merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct), GENERATE
if FinishProduct(Product) ∧

SolutionRole(S, Editor) ∧ RoleReaction(Editor, merge)

Figure 6: Weaving a single aspect: applying the RBAC aspect to reaction merge.

In the case of having more than one aspect applied to a reaction, i.e. weaving several aspects at the same join point,
the order in which the aspect functions is applied might be important. For our example, we will be defining aspect
functions that are commutative according to the following definition.

CoreGRID TR-0166 6



Definition 1 (Commutativity of Aspects) Let ΨCi
:Reaction × ΣCi

→ Reaction and ΨCj
:Reaction × ΣCj

→
Reaction be aspect functions. We say that ΨCi

and ΨCj
are commutative if the following property holds.

∀R:Reaction, TCi :ΣCi , TCj :ΣCj .
ΨCi(ΨCj (R, TCj ), TCi) ≡ ΨCj (ΨCi(R, TCi), TCj )

where ≡ denote syntactic equivalence.

The commutativity definition indicates that the order in which the aspect functions is applied to a reaction is not
important. Figure 7 illustrates the application of aspect functions ΨRBAC and ΨLOG to the merge reaction. Upper
part of the figure shows the definition of the ΨLOG function following the logging pattern defined in sub-section 4.3.

ΨLOG:Reaction× SolutionName → Reaction

∀R:Reaction, S:SolutionName
R = replace P by M if C →

ΨLOG(R, S) = R = replaceP, Log:〈ω〉
byM, Log:〈ω, S:R〉
ifC

ΨRBAC(ΨLOG(merge, S), S, Editor) =
merge = replace S: 〈EDITING:Product〉 , GlobalProduct, Log:〈ω〉

by S: 〈EDITED〉 , Merge(Product, GlobalProduct),GENERATE,
Log:〈ω, S:merge〉

if FinishProduct(Product) ∧
SolutionRole(S, Editor) ∧ RoleReaction(Editor, merge)

Figure 7: Weaving several aspects: applying the RBAC and LOG aspects to reaction merge.

5.3 Securing the VO for Product Generation
Our approach for applying AOP techniques to chemical programs comprises the following steps. First, security re-
quirements for the system under construction are defined. Second, the security requirements are modelled as aspect
functions, following the security patterns introduced in section 4. Third, we define the join points where the aspects
functions should be applied. Finally, aspects are weaved producing a new chemical program. The rest of this section
describes the application of such approach for our VO for product generation.

5.3.1 Security Requirements for Product Generation

The system for product generation has the following security requirements:

1. Organisations participating in the VO could play the roles Editor or Validator .

2. VO members playing the role Editor can execute only operations related to the edit and merge phases of the
workflow.

3. VO members playing the role Validator can execute only operations related to the validate phases of the work-
flow.

4. Acceptance of a product is considered a security-critical operation requiring to be registered in a security log.

5. Acceptance is allowed only for those VO members with a trust value higher than 0.5.

5.3.2 Aspect Transformation Functions

Figure 8 shows the three aspect functions defined for our VO, according to the requirements presented above. Function
ΨRBAC models role-based authorisation, following the authorisation pattern introduced in sub-section 4.1. We are
assuming the underlying execution system includes functions SolutionRole , associating a solution with a role, and
RoleReaction , associating a role with the reaction that can perform. Likewise, functionΨTRUST models authorisation

CoreGRID TR-0166 7



based on trust values, following also the pattern from sub-section 4.1. Here, it is assumed the existence of function
TrustValue, returning the trust value of a solution. Finally, function ΨLOG models the secure log concern, following
the pattern defined in sub-section 4.3.

ΨRBAC :Reaction× SolutionName × RoleName → Reaction

∀R:Reaction, S:SolutionName, Rol:RolName
R = replace P by M if C →

ΨRBAC(R, S, Rol) = R = replace P by M
if C ∧ SolutionRole(S, Rol) ∧ RoleReaction(Rol, R)

ΨTRUST :Reaction× SolutionName ×< → Reaction

∀R:Reaction, S:SolutionName, t:<
R = replace P by M if C →

ΨTRUST (R, S, t) = R = replace P by M
if C ∧ TrustValue(S) > t

ΨLOG:Reaction → Reaction

∀R:Reaction
R = replace S:P by M if C →

ΨLOG(R) = R = replace S:P, Log:〈ω〉
by M, Log:〈ω, S:R〉
if C

Figure 8: Aspect functions for securing the VO for product generation.

5.3.3 Defining Join Points

Table 2 illustrates the joint points for our VO according to the requirements defined previously.

Requirement Aspect
1, 2 ΨRBAC(edit, S, Editor)

1, 2 ΨRBAC(merge, S, Editor)

1, 3 ΨRBAC(valid, S, V alidator)

1, 3 ΨRBAC(accept, S, V alidator)

4 ΨLOG(accept)

5 ΨTRUST (accept, S, 0.5)

Table 2: Join points to apply aspect functions in order to secure the product generation VO

At this stage, we can see the modularity obtained by applying AOP techniques. Any change in the security
requirements implies only changes in the definition of aspect functions and join points. For instance, if the requirement
that the accept reaction should be performed only by solutions with their trust above a particular value is removed,
then the only changes required are to remove ΨTRUST function and to eliminate last row of Table 2.

5.3.4 Aspect Weaving

Finally, the aspects are weaved producing a new program. The chemical program resulting after weaving the aspects
defined in Table 2 is presented in Figure 9.

6 Related Work
The work presented here has been inspired by Viega, Bloch and Chandra’s work on applying aspect-oriented program-
ming to security [15]. They have developed an aspect-oriented extension to the C programming language following
also a transformational approach, where aspects are defined independently of the main application, and are then weaved

CoreGRID TR-0166 8



let publish = replace GlobalProduct,ACCEPTINGx,GENERATEy

by PUBLISHED:GlobalProduct
if x ≥ MinApproval(k) ∧ y = NumMerges(k)

in
let accept = replace S: 〈VALIDATING:Product〉 , Log: 〈ω〉

by S: 〈VALIDATED〉 ,ACCEPTING, Log: 〈ω, S:accept〉
if AgreeProduct(Product) ∧

SolutionRole(S, V alidator) ∧ RoleReaction(Editor, accept) ∧ TrustValue(S) > 0.5
in
let valid = replace S: 〈EDITED〉 , GlobalProduct,GENERATEy

by S: 〈VALIDATING:GlobalProduct〉 , GlobalProduct,GENERATEy

if y = NumMerges(k) ∧
SolutionRole(S, V alidator) ∧ RoleReaction(V alidator, valid)

in
let merge = replace S: 〈EDITING:Product〉 , GlobalProduct

by S: 〈EDITED〉 , Merge(Product, GlobalProduct),GENERATE
if FinishProduct(Product) ∧

SolutionRole(S, Editor) ∧ RoleReaction(Editor, merge)
in
let edit = replace S: 〈〉 , GlobalProduct

by S: 〈EDITING:GlobalProduct〉 , GlobalProduct
if SolutionRole(S, Editor) ∧ RoleReaction(Editor, edit)

in
〈S1: 〈〉 , · · · , Sk: 〈〉 , GlobalProduct, edit, merge, valid, accept, publish〉

Figure 9: HOCL program for the VO system for product generation after weaving security aspects

into a single program at compilation time. Their emphasis is on security, developing aspects to replace insecure func-
tion calls by secure ones. Our approach follows a transformational approach as proposed by Viega, with the difference
that the aspect definition is guided by the existence of security patterns.

Other efforts to apply aspects to security are presented in [16, 13, 4]. In [16], De Win et al report on the use of
AspectJ [8] to secure application software, focusing on modelling access control as a cross-cutting concern. Their
aspect model is applied to two real case studies: a personal information management system (PIM), and the File
Transfer Protocol (FTP). Their results show the high degree of modularity that can be achieved by using aspects, and
their model can be easily extended to support other authorisation models. The dynamic weaving of security aspects
in service composition is described in [13]. It is achieved by separating the security control from other functional
requirements, and encapsulating it into a service extension aspect. The woven aspect is then executed at run-time
when services are composed. In [4], Cuppens et al transform availability requirements expressed in the Nomad model
into availability aspects using AspectJ, which are then woven to secure a program.

Previous work on the application of aspect-oriented techniques to chemical programming include [9, 11, 10]. In
[9], Mentré et al present the design of shared-virtual-memory protocols using the Gamma formalism; then, aspect-
oriented techniques are used to translate this design into a concrete implementation, modelling cross-cutting concerns
such as control and data representation. They also used a transformational approach, weaving at compilation time a
Gamma program to produce an automaton. The work by Mousavi et al [11, 10] centred on extending Gamma with
aspect-oriented concepts, including aspects for coordination, timing and distribution. For each aspect, they present
new syntactic constructors and give them a structured operational semantics. The weaving process map the different
aspects into a common formal semantics domain based on timed process algebra with relative intervals and delayable
actions.

Close-related to our work is the application of aspects to high-order functional languages and term rewriting
systems, since we plan as future work to study the run-time weaving of aspects, exploiting the high-order properties
of HOCL. Aspectual Caml [14] is an aspect-oriented extension to the strongly-typed functional language Objective
Caml. Aspectual Caml offers two AOP mechanisms, namely the pointcut and advice, as well as the type extension
mechanism, which gives similar functionality to the inter-type declarations in AspectJ. PolyAML [5] is a programming
language that integrates polymorphism, run-time type analysis and aspect-oriented programming languages features.
In particular, PolyAML allows programmers to define type-safe polymorphic advice using pointcuts constructed from
a collection of polymorphic join points.

CoreGRID TR-0166 9



7 Conclusion and Future Work
This paper has developed an aspect-oriented methodology for chemical programs written using the High-Order Chemi-
cal Language (HOCL). We represent aspects as a collection of transformation functions, each one modelling a different
cross-cutting concern. The functions are applied (weaved) to a HOCL programs in order to generate a new program
that include the concerns. Our case study has been a Virtual Organisation for the production of digital product, and
the cross-cutting concerns have been security properties such as attribute-based authorisation and security logs.

We believe that our approach is generic enough and could be applied to other type of concerns such as fault-tolerant
or real-time issues.

Our current approach is not fully exploiting the high-order potentiality of HOCL. We plan to tackle this as future
work by weaving aspect at execution time.

Acknowledgments
Authors would like to thank Yann Radenac and Benjamin Aziz for valuable and insightful comments to earlier drafts
of this report.

References
[1] J-P. Banâtre, P. Fradet, and Y. Radenac. Principles of Chemical Programming. In S. Abdennadher and C. Ringeis-

sen, editors, Proceedings of the 5th International Workshop on Rule-Based Programming, volume 124(1) of
ENTCS, pages 133–147. Elsevier, June 2005.

[2] J-P. Banâtre, P. Fradet, and Y. Radenac. Generalised Multisets for Chemical Programming. Mathematical
Structures in Computer Science, 16(4):557–580, August 2006.

[3] L. M. Camarihna-Matos and H. Afsarmanesh, editors. Collaborative Networked Organisations — A Research
Agenda for Emerging Business Models. Kluwer, 2004.

[4] F. Cuppens, N. Cuppens-Boulahia, and T. Ramard. Availability Enforcement by Obligations and Aspects Identi-
fication. In ARES 2006, First International Conference on Availability, Reliability and Security. IEEE Computer
Society, 2006.

[5] D. S. Dantas, D. Walker, G. Washburn, and S. Weirich. PolyAML: a Polymorphic Aspect-Oriented Functional
Programming Language. In Proceedings of the 10th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2005, pages 306–319, 2005.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applications, 15(3), 2001.

[7] E. Gamma, R. Helm, R. Johnso, and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An Overview of AspectJ. In J. L.
Knudsen, editor, ECOOP 2001 – Object-Oriented Programming, volume 2072 of Lecture Notes in Computer
Science, pages 327–354. Springer, 2001.

[9] D. Mentré, D. Le Métayer, and T. Priol. Formalization and Verification of Coherence Protocols with the Gamma
Framework. In International Symposium on Software Engineering for Parallel and Distributed Systems (PDSE
2000), pages 105–113, 2000.

[10] M. R. Mousavi, M. A. Reniers, T. Basten, and M. R. V. Chaudron. Separation of Concerns in the Formal Design
of Real-Time Shared Data-Space Systems. In ACSD, pages 71–81. IEEE Computer Society, 2003.

CoreGRID TR-0166 10



[11] M. R. Mousavi, G. Russello, M. R. V. Chaudron, M. A. Reniers, T. Basten, A. Corsaro, S. Shukla, R. Gupta, and
D. C. Schmidt. Using Aspect-GAMMA in the Design of Embedded Systems. In HLDVT ’02: Proceedings of the
Seventh IEEE International High-Level Design Validation and Test Workshop, page 69, Washington, DC, USA,
2002. IEEE Computer Society.

[12] M. Schumacher, E. Fernandez, D. Hybertson, and F. Buschmann. Security Patterns: Integrating Security and
Systems Engineering. John Wiley & Sons, 2005.

[13] H. Song, Y. Sun, Y. Yin, and S. Zheng. Dynamic Weaving of Security Aspects in Service Composition. In SOSE
’06. Second IEEE International Workshop on Service-Oriented System Engineering. IEEE Computer Society,
2006.

[14] H. Tatsuzawa, H. Masuhara, and A. Yonezawa. Aspectual Caml: an Aspect-Oriented Functional Language. In
In Workshop on Foundations of Aspect Oriented Languages, pages 320–330. ACM Press, 2005.

[15] J. Viega, J. T. Bloch, and P. Chandra. Applying Aspect-Oriented Programming to Security. Cutter IT Journal,
14(2):31–39, 2001.

[16] B. De Win, W. Joosen, and F. Piessens. Developing Secure Applications through Aspect-Oriented Programming.
In Aspect-Oriented Software Development, pages 633–650. Addison-Wesley, 2005.

CoreGRID TR-0166 11


