
Dynamicity in Scientific Workflows

Manuel Caeiro-Rodrı́guez
mcaeiro@det.uvigo.es

University of Vigo
ETSI Telecomunicacin, Campus Universitario s/n,

E-36200 Vigo, Spain

Thierry Priol
Thierry.Priol@inria.fr

INRIA, Campus Universitaire de Beaulieu,
35042 Rennes, Cedex

Zsolt Németh
zsnemeth@sztaki.hu

MTA SZTAKI Computer and Automation Research Institute
P.O. Box 63, Budapest, H-1518, Hungary

CoreGRID Technical Report
Number TR-0162
31 August 2008

Institute on Grid Information, Resource and Workflow
Monitoring Services

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

Dynamicity in Scientific Workflows

Manuel Caeiro-Rodrı́guez
mcaeiro@det.uvigo.es

University of Vigo
ETSI Telecomunicacin, Campus Universitario s/n,

E-36200 Vigo, Spain

Thierry Priol
Thierry.Priol@inria.fr

INRIA, Campus Universitaire de Beaulieu,
35042 Rennes, Cedex

Zsolt Németh
zsnemeth@sztaki.hu

MTA SZTAKI Computer and Automation Research Institute
P.O. Box 63, Budapest, H-1518, Hungary

CoreGRID TR-0162

31 August 2008

Abstract

Dynamicity is a recurrent topic in traditional business workflow systems. The need and feasibility to perform
changes in workflow process instances while they are being executed has been a main (and to a long extend yet un-
solved) challenge. More recently, the scientific workflow domain has also paid attention to this topic and some of the
current scientific workflow management systems give a certain support for dynamicity. In general, there is a common
agreement that dynamicity is an intrinsic requirement for scientific workflows, but the understanding about the real
needs and functionality to be provided is confuse. This report is mainly focused on contributing to enhance such
an understanding by analyzing dynamicity scenarios, requirements and proposals in scientific workflows. First, five
general scenarios involving different dynamicity needs are described through the introduction of concrete examples.
Then, these scenarios are used to identify a set of dynamicity requirements for scientific workflows support. Finally,
a review of current well-known scientific workflow execution systems is presented, focusing on their proposals to
support dynamicity.

1 Introduction
The use of computational resources to perform scientific activities is increasing very fast in all scientific disciplines.
Nowadays, numerous large-scale computational systems are used to support research in physics (e.g., the CERN Large
Hadron Collider Computing Grid1), in biology (e.g., the National Center for Biotechnology Information2), in geology
(e.g., Dissemination and Exploitation of GRids in Earth sciencE3), in oceanography (e.g., Laboratory for the Ocean

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1http://lcg.web.cern.ch/LCG/
2http://www.ncbi.nlm.nih.gov/
3http://degree.ipgp.jussieu.fr/

1

Observatory Knowledge INtegration Grid 4), in astronomy (e.g., the European Grid of Solar Observations5), etc. These
systems are characterized by the distributed and heterogeneous nature of the involved resources and by the need for
the effective management and operation of the large amount of resources, data and processes involved. Eventually,
human scientists are the responsible of this management and operation. Nevertheless, in an ideal context, they should
worry as less as possible about all these management and operation issues and focus their attention on the particular
scientific concerns.

Several technologies have been proposed to support human scientists in the management and operation of large-
scale computational resources. The Grid paradigm [16] is an abstraction to a large collection of distributed het-
erogeneous resources, including computational, storage and instrument elements, controlled and shared by different
organizations. Initially, scientists’ requirements have been to deploy applications over these Grid systems, often by
manual selection and invocation of the resources to use. However, this is evolving into the need to deploy not single
applications, but whole scientific processes with several interdependent applications. Now, it is needed to deploy the
different applications, to control the order in which applications are performed, to manage the transfer of data among
applications, etc. Moreover, these operations should be performed automatically, without the need for human inter-
vention except where desired. At this point, scientific workflows have been proposed [85, 80]. Scientists are intended
to specify scientific processes, including all the intended applications and dependencies. Then, a scientific workflow
management system will execute (or enact) such specifications carrying out the intended processes while offering to
the scientists an appropriate interface to monitor the progress, visualize the output and steer their execution.

A main requirement in scientific workflows is the support of changes during execution [7, 36, 47, 57]. On the
one hand, the scientific context of the user is in flux as the scientific exploration process evolves and new evidences
and ideas are considered [77]. On the other hand, the large-scale computational system where the workflows operate
over is also in flux, as networks, platforms and other resources come and go. Therefore, scientific workflow man-
agement systems should support dynamic, adaptive and user-steered processes. Reproducibility is also an important
requirement in order to enable the study of the experiments and their comparison.

A first approach to dyminacity in scientific workflows requires a precise definition of this concept6. There are
different understandings and the various proposals approach its support focusing on the solution of different problems.
Therefore, a main goal of this report is to provide an updated picture of this research field and to identify scientific
scenarios where dynamicity is required. Then, further goals are the identification of dynamicity requirements and the
description of existing techniques and proposals.

This report needs to be considered in the context of a more specific research. Our final goal is to explore the
feasibility of a Chemical Programming (CP) [12] solution to support the dynamicity needs in scientific workflows. The
CP paradigm, or more specifically the Higher-Order Chemical Language (HOCL) [11], offers a natural parallelization
model of the computation that resembles quite well the distribution of processing chunks that is performed in Grids.
In addition, it is considered that HOCL programs can perform well in the presence of changes, facilitating their
modification during execution. These two properties seem a good starting point to support dynamicity in scientific
workflows.

The remainder of this report is organized as follows. Firstly, a view of the scientific workflow domain and the
main issues involved is introduced. Then, section 3 analyzes five general scientific scenarios demanding dynamicity.
Next, section 4 identifies and analyzes the main requirements related with the support of dynamicity. Then, a section
analyzes techniques and approaches to support some of such requirements. In the next section, some of the most
popular scientific workflow management systems are reviewed focusing on the techniques and approaches identified.
The report finishes analyzing the differences in dynamicity between scientific and business workflows and the main
conclusions of this work.

2 Scientific Workflows
The term “workflow” has traditionally been used in the context of business workflows. The Workflow Management
Coalition (WfMC7), a global organization focused on business workflow, defines a workflow as [43]: “the comput-
erized facilitation or automation of a business process, in whole or part”. In a similar way, a scientific workflow is

4http://lookingtosea.ucsd.edu/
5http://www.egso.org/
6See http://rubyhacker.com/coralbook/dynam.html for a discussion around the dynamicity meaning
7WfMC Web site http://www.wfmc.org/

CoreGRID TR-0162 2

viewed as a description of the processes that a scientist needs to execute in order to create a “scientific output” [54].
In an metaphorical way, a workflow can be viewed as a “cooking recipe”. The recipe involves several tasks (e.g., to
fry, to mixture) to be performed using certain tools (e.g., a pan, a spoon) and resources (e.g., olive oil, potatoes, eggs).
In addition, sometimes, tasks may need resources that have to be produced by other tasks previously (e.g., before
introducing a cake in the oven it is necessary to mixture all the ingredients). Other times, a certain synchronization
among tasks is required (e.g., to prepare an Hollandaise sauce butter has to be added very slowly to a mixture of egg
yolks and lemon juice, while the mixture is being continually beaten). Two key issues in this description are data
flow (namely, transfer of “contents” between tasks) and control flow (namely, transfer of the “execution right” between
tasks). In addition, each task requires some “active resources” (e.g., the chef) to be performed. It is quite obvious
that these concepts can be applied in a scientific context. Many scientific applications can be arranged as “scientific
recipes“: tasks to be performed; data transfers between tasks; etc.

The main idea in the workflow approach is to separate the workflow process description or specification from
the system responsible of its execution. The workflows are typically modeled, and graphically depicted, as ”Nodes”
(representing tasks) interconnected by directed ”Links” (representing data or control flows/dependencies). Then, sci-
entific workflow specifications can be executed (or enacted) by an appropriate scientific execution software, named
as Workflow Management System (WfMS). In accordance with the WfMC a WfMS is defined as [43]: “A system that
completely defines, manages and executes workflows through the execution of software whose order or execution is
driven by a computer represention of the workflow logic”.

A basic architecture of a typical scientific WfMS involving four main elements is described in [87] (cf. figure 1):

• A Workflow specification containing the process description (“the recipe”) with tasks, flows and dependencies.

• The available computational Resources. In the domain of scientific workflows it is usually distinguished between
services and resources.

• A Engine to orchestrate the system behavior. This component is responsible for interpreting the workflow
description and “bring it into life” (also known as enactment).

• A Middleware that realizes the communication and binding among the Resources and the Engine. Particularly,
it should support the transfer of data and the invocation of operations.

Figure 1: Main components of a Grid workflow system (image taken from [87])

This basic structure can involve several differences at certain issues between the existing scientific workflow man-
agement systems (see section 6). They use different names for the task and link concepts [78]. Tasks are named as
actors in Kepler, transitions in Petri Net based proposal, procedures in VDL, activities in AGWL, elements in CoG
Kit’s Karajan, and units in Triana. The links between tasks are also known by different names: vertices in a graph,
edges in Petri Nets, pipes in data-flow systems, and channels in service-based systems. In the case of the links the
differences are not simply in the sintaxis, but also in their semantic meaning where it is possible to distinguish between

CoreGRID TR-0162 3

control- and data-driven models. Another difference between scientific workflow systems is in the final “actors” used
to perform the tasks, distinguishing between resources and services. In the following sections these differences are
analyzed together with the description of the common life-cycle of a scientific workflow. Eventually, some of these
issues play an important role in the consideration of dynamicity needs.

2.1 Control- Versus Data-Driven Workflows
The meaning of links in scientific workflows can be considered in different ways. Two main approaches are followed,
control-driven and data-driven, but intermediate approaches mixturing elements from both are also proposed [78].

In the control-driven approach, links between tasks represent control constrains to the performance of each task.
Several control structures can be found, being the more basic the sequence, that represents ordered execution of tasks.
More complex constructs are splits, joins, loops, etc. The workflow patterns have been proposed in the business
workflow domain to catalog and describe the possible control behaviors [2].

In the data-driven approach, links between tasks represent data dependencies. A task consumes data and produce
data. Each task can be initiated as soon as its input data is available. his approach has the advantage that parallel
execution of independent tasks is modeled for free [46].

There are different arguments to use one or another approach. In the one hand, using the control driven approach
gives more control over the actual order of task execution [68]. In the other hand, the data driven representations are
simpler for the final user. Pure data-driven approach, however, is not expressive enough to model iterative behavior
[68].

Many proposals follow an hybrid approach based on a combination of control and data approaches. These hybrids
use both types of dependencies, but they are normally biased towards either data flow or control flow, using the
other to better handling certain conditions. As an example, in JOpera [69] a data-driven solution is taken as base
proposal and then particular control constructs are included for those patterns that are not well-supported. Well known
scientific workflow languages, such as AGWL (see section 6.1) and SCULF ((see section 6.6) include control-flow
(e.g., exclusive choice, sequential loops) and data-flow links (e.g., input/output ports, data collection operators [73]).

2.2 Workflow Processing Strategies: Resource-based and Service-based
In relation with the final actors responsible for the effective performance of tasks two main solutions are identified
[37]:

• The task-based solution (also referred to as global computing), where a computing task is formally described
before being submitted. Users define computing tasks to be executed. Executable code files, input data files and
comand-line parameters are provided to enable the invocation of the execution. The workflow manager has to
find an appropriate computational resource where the program can be executed.

• The service-based solution (also referred to as meta computing), where a computation handled by an external
service is invoked through an interface. Services are seen as black boxes from the workflow manager, for which
only the invocation interface is known. The workflow manager has to find appropriate services providing the
functionality required.

These approaches have led to the design of different workflow managers. The services paradigm has been widely
adopted by middleware developers for the high level of flexibility it offers. However, this approach is less common for
application code, as it requires all codes to be instrumented with a service interface. In practice, there are intermediate
solutions where services are dynamically deployed in an on demand basics.

2.3 The Scientific Workflow Life-cycle
The execution of scientific workflows involves the processing of a workflow specification and the coordinated use of
appropriate resources or services. Several authors identify three stages in this process, proposing three different levels
for workflow descriptions [30, 57]:

• Abstract workflows. At this high level of abstraction the workflow contains just information about what have to
be done at each task along with information about how tasks are interconnected. There is no notion of how input

CoreGRID TR-0162 4

data is actually delivered or how tasks are implemented. As an example, an abstract workflow may be described
as being a linear equation solver taking inputs from an experimental device and sending the results to a monitor.

• Concrete workflows. The mapping down to a concrete workflow annotates each of the tasks with information
about the implementation and/or resources to be used. Information about method invocation and actual data
exchange format are also defined. For example, a Cholesky solver will be used.

• Workflow Instances. The workflow instance represents the actual mapping of the concrete workflow onto the
computational resources, involving the specific input data and the corresponding results. This level can be
decomposed into two additional ones [27]:

– Workflow instance. Describes the workflow at the application level without indicating the resources needed
to execute it. Then, it involves the concrete workflow and the data, but not any details about the executing
system.

– Executable workflow. It is created by mapping the workflow instance onto the computing resources.

This notion of levels is not recognized by all the proposals and in practice is quite restrictive. Rarely, will a
workflow pass cleanly through these three stages. Parts of the same workflow may remain abstract at the same time
as other parts are concrete (or even enacted). Nevertheless, it can be important to have in mind these three stages in
order to analyze different dynamicity needs.

3 Intrinsic Dynamicity in Scientific Workflows
This sections shows how dynamicity is intrinsic demanded by scientific workflows. Figure 2 represents the different
stakeholders involved in the scientific workflow model. They are taken into account to identify five scenarios (A to
E) where it is clear the need for dynamicity. The scenarios consider different issues, some of then more related to
the scientific problems that need to be supported (scenarios A to C) and other ones more related to the computational
mechanisms used to provide the support (scenarios D and E).

Experiment Plans

Resources

Provide data dynamically

Sensors

Form hypothesis

Identify and define the problem

Scientists

Incomplete Specifications

Real Resources

Large Amounts of Distributed Data

DataWorkflow Engine

Scenario
 A

Scenario
 B

Scenario
 C

Scenario
 D

Scenario
 E

Figure 2: Scientific workflow scenarios requiring the support of dynamic behaviors

CoreGRID TR-0162 5

3.1 Scenario A: Scientific Exploration
Scientific research is exploratory in nature. The scientific method [1], the ”tool” that scientists use to perform scientific
research, is described as an iterative process involving the following steps: identifying the problem, stating a hypoth-
esis, conducting experimentation, evaluating the results and reaching a conclusion. A key point in this process is the
testing of hypothesis through experimentation and observation. Usually, this requires the performance of experiments
involving different activities with several parameter settings. With the formulation of experiments as scientific work-
flows, one could imagine creating a first workflow description of an experiment and subsequently testing with different
combinations of parameters and process adaptations until a suitable solution is found. In this way, scientists do not
use to work with well-established workflows, rather they converge on final workflows through an iterative process
of exploration, often in a trial and error manner, developing different versions of the same workflow as the research
progresses [36].

A important domain where this kind of exploratory scenario can be found is Medical Image Analysis (MIA) [35].
MIA procedures use to involve the processing of medical image data in accordance with several elementary tasks
depending on the analysis objectives. In general, the chain of elementary tasks to apply is not necessarily linear and
there is often a graph of interconnected tasks. For efficiency in healthcare, well-established MIA methods are typically
automated or require minimal user intervention [66]. Nevertheless, when existing procedures and techniques are not
valid, it is necessary to conduct medical experiments resembling the scientific method [60, 17, 56, 79, 53, 76, 18]. In
these situations, an expert needs to conceive several procedures over different data sets and to assess the computation
results. By inspecting the results produced during experimentation, a medical or technical expert can detect problems
and conceive new solutions.

A more concrete example showing this exploratory behavior in MIA is described in this paragraph. It is about the
identification of brain tissue loses in order to diagnosticate Multiple Sclerosis. This degenerative disease is a neuro-
logical disorder that predominately affects young adults and is associated with recurrent attacks of focal inflammatory
demyelination (plaques) that cause neurological impairment, separated by periods of relative stability. An automatic
image-based method to quantify disease burden is described in [21], see figure 3. The fully automated method uses
Magnetic Resonances (MR) to quantify brain atrophy and is based on estimation of the Brain to IntraCranial Capacity
Ratio (BICCR). The stages involved in this procedure are basically:

1. Intensity Non-Uniformity Correction. The inhomogeneity of the MR acquisition device magnetic field intro-
duces a bias perceptible in images as a continuous variation of gray-level intensity. The non-uniform intensity
correction algorithm iteratively proceeds by computing the image histogram underestimating a smooth intensity
mapping function that tends to sharpen peaks in the histogram. Application of this procedure improves the
accuracy of the tissue classification stage described below.

2. Stereotaxic Registration. Each image is linearly registered in a common Talairach space in order to compensate
for size variations between individuals. The registration algorithm proceeds with a coarse-to-fine approach by
registering subsampled and blurred MR image volumes with the stereotaxic target. The final data used for
subsequent processing is only re-sampled once to minimize re-sampling/interpolation artifacts.

3. Intensity Normalization. In preparation for intensity-based classification, each image is intensity normalized to
an average PDW or T2W target volume already in stereotaxic space.

4. Cropping. Since the entire cerebrum was not covered by the MRI acquisition in all subjects, the inferior and
superior slices were cropped away.

5. Anisotropic Diffusion. It has been shown that the application of an edge preserving noise filter can improve the
accuracy and reliability of quantitative measurements obtained from MR images.

6. Bayesian Classification. A Bayesian classifier is then used to identify all gray-matter, white-matter, cere-
brospinal fluid, lesion and background voxels.

7. Brain Masking. Mathematical morphology was used to eliminate the scalp and meninges for further processing.
A brain mask was created by applying an opening operator.

This algorithm was achieved after a large research, following an iterative exploration on different stages and
datasets. Actually, only the two last stages are directly related with the identification of the brain atrophy. The first

CoreGRID TR-0162 6

Figure 3: Diagram of the atrophy computation method stages for multiple sclerosis (image taken from [21])

stages involve basically the preparation of the images in order they can be correctly processed. There are three stages
introduced to obtain an appropriate quality in the images: Intensity Non-Uniformity Correction, Intensity Normaliza-
tion and Anisotropic Diffusion. Depending on the raw images features these stages may be required or not. Some of
these are dependent on the hardware profiles of the data collection device used to generate the datasets. In addition,
the Stereotaxic Registration and the Cropping are introduced in order to rectify discrepancies in the raw data. Since a
patient may be scanned with different equipment over the course of a treatment, a registration stage may be needed to
align each of the patient’s scans.

An exploration process can involve the experimentation with different tasks, as in the previous example, but it can
also be considered in relation with variations in the range of parameters used. The Promoter Identification Workflow
(PIW) [7] is a well-described workflow to identify and characterize eukaryotic promoters (a promoter is a subsequence
of a chromosome that sits close to a gene and regulates its activity). Starting from microarray data, cluster analysis
algorithms are used to identify genes that share similar patterns of gene expression profiles that are then predicted to
be co-regulated as part of an interactive biochemical pathway. Given the gene-ids, gene sequences are retrieved from
a remote database and fed to a tool that finds similar sequences. In subsequent steps, transcription factor binding sites
and promoters are identified to create a promoter model. An improved version of PIW allows the user to inspect inter-
mediate results and select and re-rank them before feeding to subsequent steps, enabling the iterative and interactive
refinement of the promoter model. Similar examples related with the exploration of parameters can be found in MIA
[66] or in biology [45].

This scenario is being considered by numerous scientific workflow initiatives as it can be found in many projects:
gene expression analysis [45], DNA clone characterization [77], earthquake wave propagation simulations [26], plasma
edge simulation in fusion physics [50], etc. The need for dynamicity solutions in this scenario increases as the ex-
periments to be performed demand large amounts of computational resources and take a long time to finish. In these
situations, it becomes more important to run several alternative experiments at the same time and to introduce changes
at certain points without loosing the already valid results. It can also be considered in relation with the development
of scientific workflow prototypes and their interactive debugging [29] .

3.2 Scenario B: Ill-defined Problems
Many times, during scientific work, it is not possible neither convenient to try to preview all the possible tasks or
parameters in advance. By the contrary, the tasks to be performed or parameters to be used at a certain point may be
so dependant on the results provided by the previous tasks that it does not make any sense to try to preview them. At
this point, the most desirable solution is to enable the specification of new tasks and their interdependencies or the
parameters when the previous results are known.

A clear example of this ill-definition can be found in the area of mathematical solvers. In the climate simulation
problem described in [51] the proposed workflow chooses optimized algorithms based on performance measurements
to identify a set of resources that fulfill a given high-level function, such as a matrix multiplication. The task of
conducting the matrix multiplication is specified at the time the workflow is specified. However, its instantiation and
the appropriate selection of which algorithm to choose are conducted during runtime. It is also worthy to mention
the Grid-TLSE project [8], which aims at designing an expert site that provides an easy access to a number of direct
solvers for sparse linear systems. Sparse direct solvers are very different in practice since they often use different
algorithms with their own control parameters. Multiple parameters interfere for efficient execution of a sparse direct
solver: ordering, amount of memory, libraries available, etc. This project provides assistance in choosing the right
solver and appropriate values for its control parameters in accordance with the characteristics of the problem that

CoreGRID TR-0162 7

needs to be solved. There is a wide range of applications requiring these methods: seismic imaging [67], cosmological
simulations [19], fusion plasma simulations [29], air quality forecasting [84], etc.

In addition to the previoues cases, scientists typically divide up overall tasks into smaller sub-tasks, each of which
can be considered to be an individual step in an experiment [27]. They have a clear idea about the global tasks, but the
way in which they should be performed by using more specific sub-tasks is not clear. The decisions they make about
which steps to take next are based on the latest available information. This is defined as ”component substitution“ in
ICENI [57], or ”frame/dynamic embedding in Kepler [62]. A workflow may need to be dynamically designed in the
sense of looking at the results of the initial steps before a decision can be made about how to carry out later analysis
steps.

Strictly, the previous problems do not require a dynamical solution, as it could be supported by a solution based
on the Exclusive Choice pattern [2], that enables to describe alternative workflow paths. Anyway, if the number of
alternative paths is very high this is no more a valid solution.

3.3 Scenario C: Event Driven Applications
Nowadays, the application of computational technologies to new problems and the need to get more accurate outcomes
demand the use of updated (and in some cases real-time) data inputs. In many scientific applications data acquisition
use to be a key part of the process and data sets are being progressively produced [37]. The Dynamic Data Driven
Applications Systems (DDDAS) concept entails capabilities where application simulations can dynamically accept and
respond to field-data and measurements, and/or can control such measurements [24]. This synergistic and symbiotic
feedback control-loop between simulations and measurements goes beyond the traditional control systems approaches.
In some cases, the simulation can determine how and when the measurements should be made. In other cases, the
data or events received can provoke changes in the tasks to perform. For example, in severe storm prediction, data
analysis agents may examine radar data searching for specific patterns [36]. Depending upon the specific pattern of
events, different branches of a storm prediction workflow may be enacted which may require that significant compu-
tational resource be made available on-demand. Should the storm intensify or should resource availability change, the
workflow must adapt.

A more simple example, but also showing this event driven behavior, is depicted in figure 4. It is an actual scientific
workflow that captures the operation of an experimental study in the Soil Sciences Department of the University of
Wisconsin [3]. The objective of the experiment is to produce daily forecasts of near-surface temperatures in cranberry
bogs in Wisconsin. These forecasts give cranberry farmers advance warming of over-night frost conditions, so they
can take action to protect their fields from frost damage.

1. Around noon each day, satellite and ground-based meteorological observations are processed in the Atmospheric
Sciences Department of University of Wisconsin, generating a 24-hour weather forecast at several heights in the
atmosphere for the whole United States.

2. This US forecast is fed into a Bog Forecast Extraction program that extracts forecasts for points that are 25
meters above specified cranberry bog locations.

3. These forecasts are sent to the Soil Science Department where they are processed by CranEB to derive a forecast
for the level of the cranberry wines.

4. Later in the day, as new weather observations become available, the initial 25m bog forecast can be updated:

• Scaled CranEB output forecasts are compared with new observed weather conditions in a package of
statistical routines.

• Appropriate corrections to the original 25m bog forecast are determined, and CranEB is rerun.

With this feedback mechanism, the canopy-level forecast is updated continuously through the day.

5. The files generated by CranEB are fed into the Devise Visualization tool that generate GIF plots of canopy
temperature vs. time. These plots are then published on the Web, where they can be readily accessed by
cranberry farmers throughout Wisconsin.

CoreGRID TR-0162 8

Figure 4: The cranberry workflow(image taken from [3])

Another well-known example of this scenario is found in the LEAD project [28, 33]. Streaming observations from
external sensors (e.g., radars) are mined for specific features by a persistent data mining agent. If an event is detected,
the system automatically launches a weather forecast. As the forecast output is produced, it is directed to the same
data mining engine to identify specific features that, if found, might be used to re-task the radars. The process then
repeats in a closed-loop fashion.

In general, this kind of scenario can be found in relation with nature phenomenons that require an accurate and just-
in-time response, such as [23]: medical intervention and treatment, environmental and natural resource management
(e.g. forests fires, hurricanes, contamination spread), urban traffic management [40], wheather analysis and forecasts,
etc.

3.4 Scenario D: Processing Large Amounts of Data
The analysis of large amounts of data is becoming commonplace in many scientific endeavors. In addition, they involve
large teams of scientists and technicians, and engage in experimental methods or procedures that take long times to
complete. Despite the computational and data management capabilities of new systems are increasing very fast, the
demands of scientific problems increase faster. Therefore, efficient data management and computational mechanisms
that enable to obtain the maximun performance from existing resources are demanded. For example, parallelization
and distribution approaches play a main role towards efficiency as they allow the use of numerous resources. At this
point, dynamic behaviors in scientific workflows are also conceived to facilitate such parallelization and distribution.

A clear example of this scenario can be seen in the Climateprediction.net8 project [5]. It is a distributed computing
project inspired by the success of the SETI@home9 project [9]. Users’ computers download a model of the earth’s
climate and run it for approximately fifty model years with a range of perturbed control parameters. Then, the produced
results are returned to one of many upload servers. The data of these models creates a data set that is distributed across
many servers in a well-defined fashion. This data set is too big to transport to a single location for analysis, so it must
be worked on in a distributed manner. The challenge arises because the number of pieces this dataset is split into varies
for a range of reasons, including the addition or removal of servers from the experiment and changes to the location or
sub-division of data.

In order to derive results, it is intended that users will submit analysis functions to the servers holding the data
sets. Users are unable to ascertain how many servers a given subset of this data that they want to analyze spans, nor

8Climateprediction.net Web site at http://www.climateprediction.net/
9SETI@home Web site at http://setiathome.berkeley.edu/

CoreGRID TR-0162 9

should they care. Their interest is in the information they can derive from the data, not how and where it is stored. An
example of user function is the average temperature of a given set of returned models [39]. If these temperatures spans
a servers, this calculation can be described in a way that could be used for distributed computing as:

y0 =

n1−1∑

i=0

xi

z0 = n1

y1 =

n2−1∑

i=n1

xi

z1 = n2 − n1

. . .

. . .

ya−1 =

na−1∑

i=na−1

xi

za−1 = na − na−1

x =

∑
a−1

i=0
yi∑

a−1

i=0
zi

Each subset of the data set has a computation performed on it, with the results used by a final computation to
produce the overall average.

There exist more common examples of dynamic behavior demands related with the processing of large amounts of
data in scientific problems [74, 37, 68, 58]. Datasets in scientific workflow may contain static or dynamic (unknown
at composition time) number of data elements. In this way, several data collection operators to manage dynamic data
collections in scientific workflow initiatives are described. In the ASKALON Grid environment several constructs
have been proposed for the distribution of data collections [73]. A data collection is an ordered list of data elements,
i.e. a one-dimensional array. The problem to solve is how to map a one-dimensional array of data elements (a data
collection) to a number of parallel loop iterations. They propose four distribution constructs: BLOCK, BLOCK(S),
BLOCK(S,L) and REPLICA(S). These four constructs are processed at runtime to determine which elements of a data
collection are distributed onto which iteration. They involve dynamic behaviors in accordance with the number of data
elements and the number of parallel iterations. Similar operators can be found in the JOpera system [69] (e.g., split)
and Kepler [58].

The authors of JOpera also introduce another example of dynamism related with data changes in scientific work-
flows [68]. It is about the pipelined execution of several tasks, see figure 5. As opposed to iterative execution, where
each data element would have to go through the entire sequence of tasks before the next data element of the vector is
processed, with pipelined execution the elements are streamed through the workflow. Similar to the situation described
previously, the set of input elements may be know in advanced or new elements may appear while the pipeline is run-
ning. The application of a parallelization construct can reduce the overall execution time of the workflow by a factor
proportional to the length of the sequence of pipelined tasks. It is particularly interesting the superscalar execution
semantics, as it requires to dynamically create additional task instances whenever they are needed to avoid collisions.
Thus, if a new input data element is available for a busy task, another instance of the same task is created in order to
process the new data element in parallel.

CoreGRID TR-0162 10

Figure 5: Informal representation of different pipelined execution patterns (image taken from [68])

3.5 Scenario E: Tackling with Real Resources
Scientific workflows usually involve the performance of intensive computations with large amounts of data. During
workflow design, appropriate resources to perform computations and manage data are described in a decoupled way,
enabling the performance with different resources (e.g., Grids). This is achieved by specifying the functional and non-
functional requirements of the resources required to perform each task in a more or less ”ideal“ way. Nevertheless,
final computations and data management are going to be performed not in ”ideal“ recourses, but in real ones. Real
resources involve issues such as availability, capacity and in general performance limitations that may prevent the
execution of scientific workflows as they were planned. Moreover, resources can come and go [85, 71], because of
failure, local policy changes, overloaded resource conditions, etc. Many of these issues fall into the domain of system
and network administrators, who must design infrastructure to provide redundant components. Anyway, solutions
involving the dynamic change of scientific workflows are also considered.

A first dynamicity solution to cope with this scenario is the mapping or allocation between workflow specifica-
tion and resources. The mapping needs to be performed dynamically, adapting the description of the workflow in
accordance with the state of the resources at each moment [87]. This issue is also related with the scheduling of work-
flow tasks, to get the better performance from the resources available. In [72] they use a high intensive computation
application to test a dynamic scheduling algorithm against a genetic algorithm.

An example of an scientific workflow environment where execution problems are considered is described in [4].
It is about the e-HTPX project, a distributed computing infrastructure designed for structural biologiest to remotely
plan, execute and monitor protein crystallography experiments. The services developed for this project define the
e-HTPX Pipeline (or workflow) illustrated in Figure 6, where the following stages are proposed: Protein Production;
Crystallization; Data Collection; Phasing (data processing); Solution of digital protein structure model; and Submis-
sion of protein model into public database. The workflow covers protein crystallization, delivery of a protein crystal
to a synchrotron radiation facility, data collection using X/ray diffraction methods and HPC data processing services.
Remote access to these services is implemented by a collection of Web services. Unexpected errors can occur in this
infrastructure mainly due to the physicality of the tasks. For example, during data collection if a sample-changing
robot fails to operate correctly or a crystal sample is damaged in transit. Because these errors are physical in nature,
they are difficult to forecast. Furthermore, because these types of error cannot be anticipated by the workflow-engine
they are difficult to handle. In such cases, it may be necessary to restart the workflow form a specific breakpoint and

CoreGRID TR-0162 11

roll back to a point where all prior activities were successfully completed.

Figure 6: e-HTPX Protein Crystallography workflow (image taken from [4])

Finally, in certain domains workflows are not developed in isolation, but they interact with other resources. In [47]
the following situation is described: “suppose that a certain business unit of a company is awaiting the results of a
Grid workflow that is taking more time to complete than expected. In such a case, it could be useful if the workflow
could be modified while running in order to get it to finish faster (e.g., by removing certain parts of the workflow that
are not considered essential to obtain the results needed)”.

4 Dynamicity Requirements in Scientific Workflows
The previous section introduces some general scientific scenarios involving the use of workflows and large amounts of
computational and information resources. Supporting the scientific work in those scenarios is an important challenge
as it requires the provision of dynamicity solutions. The literature has introduced many requirements [36, 66, 40,
47, 55, 50, 87, 77]: appropriate user interfaces that provide scientist with tracking information about the scientific
process development, facilities to change the parameter space, capabilities to change the workflow activities, etc. This
section introduces a classification for these requirements. A first grouping distinguish between two different kinds of
requirements: change requirements (CR) and usability requirements (UR). The first ones are about issues that should
be able to change during scientific workflow execution. The second ones are about issues required to facilitate the
performance of such changes. Next sections describe the requirements considered at each group.

4.1 Change Requirements
This section introduces a generic analysis about the issues that could be required to change in scientific workflows
dynamically. It is based on a previous proposal in Grid workflows [51]. In accordance with this proposal, the elements
involved in the instantiation of a scientific workflow model are: a set of Grid resources and/or services’ instances, a
quality expectation defined by the user(s) and a workflow abstract model. We consider several modifications to this
formalization through the generalization of the quality user expectations as Data Elements, enabling also changes in
input data, and the introduction of Abstract-to-Concrete Transformations. In this way, the formalization of a scientific
workflow model is as follows:

Wi = (Gr,Gs,Dv, Ct,Wm) (1)

where

Wi = Workflow instantiation (also know as concrete workflow),

CoreGRID TR-0162 12

Gr = Grid resources,
Gs = Grid services,
Dv = Data values,
Ct = Abstract-to-Concrete transformations,
Wm = Workflow Model (also know as abstract workflow).

The concept of dynamically changing workflows and their associated states can be denoted through the addition
of a time stamp and an adaptation function a at time T . Hence,

WT

i
= (GT

r
,GT

s
,DT

v
, CT

t
,WT

m
) (2)

↓ aT (3)

WT+1

i
= (GT+1

r
,GT+1

s
,DT+1

v
, CT+1

t
,WT+1

m
) (4)

In order to specify a transformation function, a series of previous workflow instantiations may be considered to
determine a future instantiation. Hence:

WT+1

i
← a(WT0

i
, · · · ,WT

i
) (5)

where T0 is the initial time.
Figure 7 shows the identified requirements in accordance with an adapted version of the WfMC reference model

[43], as it has also been proposed to analyze scientific workflows [85]. The circled numbers indicate the typical
location of the elements involved at each requirement. Next sections include a more detailed analysis of these five
requirements.

Final
Users

Worflow
Design
and
Definition

Workflow
Execution
and
Control

Interaction
with
Resources
and/or
Services

1

2 3

4 5

. . .

Workflow Enactment System

MIDDLEWARE

Build Time

Run Time

 Resources Services

 Data

Workflow Abstract
 Model

Scientific Workflow Modeling & Definition Tools

Workflow Concrete

Figure 7: Dynamism requirements Reference Model

CoreGRID TR-0162 13

4.1.1 CR-1: Changes in the Workflow Abstract Description

The modification of workflow abstract descriptions while they are being executed is a typical dynamicity requirement
in scientific workflows. It is associated with “human in the loop” situations as described in scenarios A and B [34, 10,
20, 47, 40, 32, 87]. In some cases, scientists do not want, or do not know how to fully design and construct a workflow
specification before executing an experiment. In other cases, different alternatives to proceed with the workflow can
be explored. The user may also want to modify the workflow during runtime depending on intermediate results. In
real practice, changes can consist in tasks to be added, replaced or removed. It is also possible to to modify the control
or data flow/dependencies between tasks. For example, several tasks that could be performed in sequence now can be
performed in parallel.

4.1.2 CR-2: Changes in Abstract-to-Concrete Transformation

It is possible to require changes in the Abstract-to-Concrete workflow transformation. As it has been introduced in
the workflow life-cycle description, see section 2.3, the workflow descriptions produced by final users use to involve
certain abstract tasks that need to be determined before execution. This stage enables to use different methods to
achieve a certain goal, providing in this way an adaptation layer that enables to obtain performance enhancements.
The scenario D also may require transformation from an abstract to a concrete workflow description. For instance, the
ClimatePrediction.net example considers transformations to support the processing of the large amount of data dis-
tributed in several servers. Therefore, it is also possible to consider changes in these transformations. This requirement
is not usually recognized, as not all the systems involve this stage.

4.1.3 CR-3: Changes in Data

The ability to change the involved data in scientific workflows is a very common dynamicity requirement. Many times
in scientific workflows, users need to change certain parameters or input data values dynamically (e.g., user quality
expectations [51]), as it is described in the scenario A. Other times, workflow data is not available when the workflow
is started, but it is dynamically obtained, as in the scenario C. Moreover, some workflows may act on the data itself,
organizing it in appropriate data sets in order to be processed appropriately, as in scenario D. As the number of data
inputs is not known during the design time, it is not possible to describe a generic workflow involving a certain number
of data elements. Then, the workflow has to adapt to perform the described function at runtime once the final number
of inputs is known.

To support this requirement is important that the scientific workflow execution does not need to be re-started since
the beginning, but it can use the already valid performed computations. It is also important to be able to relate the
results obtained with the data inputs used, in order to facilitate scientists examining the obtained results. For example,
it should be facilitated the comparison of the results obtained from the execution of the same workflow with different
input data.

4.1.4 CR-4: Changes in the Resources

An important feature in computational systems supporting scientific workflows, usually Grid systems, is the contin-
uous change of resources [40]. The resources available are not guaranteed and may be switched off or altered with
time. Moreover, the resources can fail to execute the assigned tasks, and they may be blocked or stalled. Therefore, if
someone is using addresses (or names) of such resources to build a workflow, it is important to be aware that such a
workflow will only be processable by those particular resources. In order to overcome this obstacle the solution must
support an abstract layer in resources’ identification. Then, the names used by the workflow designer will not become
outdated due to changes in the processing system.

In the case of abstract identification of resources, the workflow has to be composed with the support of automated
discovery and assembling of available resources. At run time, the engine should adapt to meet the dynamic changes
occurred in the deployed resources. This is more important taking into account that scientific workflows use to involve
complex problems, potentially utilizing thousands of resources that can run for several hours, days or even weeks.
At this point, it is also necessary to take into account issues that cope with possible problems during the workflow
execution, such as self-healing systems [64], load balancing [83], fault-tolerance [70], etc.

In a certain way, this requirement is applied to the whole scientific workflow model and not simply to dynamicity.
Anyway, scenarios D and E, introduce specific unexpected situations that require a dynamicity solution. In scenario D,

CoreGRID TR-0162 14

the management of large amounts and the need to distribute and parallelize their processing requires the involvement
of different resources dynamically. In scenario E, it is required the adoption of mechanisms to cope with resource
failures and availability constraints.

4.1.5 CR-5: Changes in the Services’ Instances

Similarly to the changes in the resources considered in the previous section, it is also possible to need changes in the
services’ instances. The service-oriented approach to workflow management introduces an abstract layer enabling the
use of different instances of a certain service during execution. In this way, it should be possible to change the instance
used.

As in the previous case, this requirements is also intrinsic to the scientific workflow model. Anyway, it is consid-
ered as a specific dynamicity requirement in relation with scenarios D and E.

4.2 Usability Requirements
This section considers requirements about how changes during scientific workflow execution can be appropriately
supported by workflow management systems. This is an important point, because it is necessary to provide suitable
functionality to perform changes in a way as simple as possible. Modifications should not only be feasible, but they
should be performed with at a “low” cost.

Two different kind of models for introducing changes during workflow execution are identified. On the one hand, a
model where the “human user” (e.g., a scientist) is in control. This user has to be provided with an appropriate interface
to monitor and control the scientific workflow execution. On the other hand, an autonomous (or self-organizing) model
where modifications are performed in a controlled and automatic way following rules or algorithms. The first model is
more related with scenarios A and B, while the second model is more related with the scenarios C, D and E. Anyway,
the final needs of a certain system use to involve issues from both models. Next sections introduce eight usability
requirements. The first four are about common issues in order to facilitate and enable the performance of changes.
The next two requirements come from the “human user” model and the last two requirements from the autonomous
one.

4.2.1 UR-1: Monitoring

An important part of any long-running scientific workflow is monitoring of its progress and outputs [77]. This real-
time feedback is necessary both for human users and for autonomous systems to detect any kind of problem during
execution. In addition, the monitoring information is necessary for scientists to be able to interpret and validate the
results.

The monitoring challenge is to supply the information at the right level of detail in a form that is easily understable
by the final user (at this point the differences in user expectations make this challenging). Making this information
available requires the collection of data and their processing towards an appropriate presentation. Operations such as
aggregation, correlation and filters can be required. The idea is not to provide raw data, but processed data closer to the
user expectations. Human user monitoring is usually performed through appropriate graphic visualizations in order
to facilitate the understanding of the results [14]. These graphic visualizations should be supported by user interfaces
that enable scientists to browse/traverse, query and select information of interest.

Finally, monitoring of the workflow execution should be provided both in real-time and also off-line, as a kind
of memory. Recordings of monitoring information are very important in order to validate the results obtained and to
compare the results from variants of the same experiment (e.g., using different tasks, input data or parameters).

4.2.2 UR-2: Automatic Control

Due to the heterogeneous and distributed nature of systems supporting scientific workflows execution (e.g., Grid
systems) faults inevitably happen, as it was described in scenario E. Automatic control is considered to complement
monitoring by supporting the detection of certain situations of interest. The final idea is to be able to notify of any
fatal failures or long delays. As in the previous requirement, such a notification can be provided to a human user or to
an autonomous system that has to take a solving action.

In addition to the typical detection of failures and execution problems, some scientific workflows also use to require
automatic controls in order to cope with unexpected external events. Typically, workflows requiring the processing

CoreGRID TR-0162 15

of real-time data, as in scenario C, need to be aware of new data elements available or any other event of interest.
Similarly, many workflows involve the processing of optimization algorithms, consisting on an optimization loop that
converges after an number of interactions are processed. The number of interactions is not know beforehand, but it is
determined in accordance with an optimization criterion. These situations require the automatic control of certain data
elements and/or events.

4.2.3 UR-3: Reproducibility

A general requirement in scientific work is the ability to reproduce results obtained. Just as the results of a conven-
tional lab experiment should be reproducible, computational experiments and runs of scientific workflows should be
reproducible, indicating which specific data and tools have been used. Reproducibility is also used when errors are
produced and the workflows need to be examined to try to discover the causes.

In the case of dynamic workflows Reproducibility becomes a more important requirement, as it is supposed that
process and data can be changed during the execution. In this way, information about the changes and modifications
applied should be available in order to get a precise knowledge of the tasks performed and the data involved [36].
The challenge is to develop mechanisms to create, manage and capture dynamic workflows so that reproducibility of
significant results is possible. In addition, it also should be possible to allow the final user to introduce comments in
the workflow results in order to facilitate their later revision.

4.2.4 UR-4: “Smart” re-runs

The “smart” re-runs requirement is about the ability to perform a dynamic change and re-initiate the workflow ex-
ecution without repeating the already performed work not affected by the change. Usually, it requires to re-initiate
the workflow at an already performed stage, allowing to backtrack to a saved state without starting over from scratch.
This requirement is also needed in the case of a system failure. In addition, it becomes more important when scientific
applications use to involve complex problems, potentially utilizing thousands of resources for workflows that can run
for several hours, days or even weeks.

4.2.5 UR-5: Steering

Steering is about the interactive execution of workflows enabling to run, stop, pause and inspect the status of tasks
and data [48]. This requirement needs to be combined with the monitoring facility in order to facilitate human users
to control the execution. In addition, Steering is considered in order to enable the detection and analysis of problems
during workflow execution. In this way, it is considered as the typical debugging functionality available in many
computer programming environments. At run-time, a user should be allowed to control the progress of the flow
execution (e.g., through VCR like operations: play, pause, stop, proceed and operations), to steer the execution of a
flow, to introduce breakpoints, to interact with constraints defined in a flow, and in general to change or modify the
flow description [47, 34].

4.2.6 UR-6: User Modifications

Most of the time scientists perform experiments by varying the tasks performed or the parameters used, as in sce-
narios A and B. In addition, some problems that may appear during execution could be solved by performing some
modifications. Therefore, execution systems should provide interactive GUIs that enable human users modifications
to the workflow model and to the data involved are required [77]. In order to facilitate the performance of changes
by non-expert users (e.g., scientists), such interfaces should provide a broad set of facilities and mechanisms [27]
that enhance the performance of data changes (with appropriate displays for different types of data), assistance for
composing scientific workflow descriptions, etc.

It is also important to notice that many scientific workflows require user decisions (e.g., to select a region of
interest in an image) and interactions at various steps [55, 66]. For example, an improved version of PIW (example
described in scenario A) allows the user to inspect intermediate results and select and re-rank them before feeding
them to subsequent steps.

CoreGRID TR-0162 16

4.2.7 UR-7: Adaptations from the Workflow Description

Many times changes to be performed in a workflow can be planned during design time or they can be previewed
(despite a clear specification is not performed). Therefore, the workflow language should provide constructs to support
the description of scientific workflows including possible adaptations. A main need is the feasibility to include abstract
tasks enabling their detailed specification during run-time, as in scenario B. In addition, it should be possible to use
conditions and event-controls (as in scenarios C and E) to decide the use of certain parts of a workflow description
during run-time. This requirement is also found related with the performance of parametric studies. In this case it is
required that the same workflow is tested against a range of parameters [38].

This requirement is also present in the scenario D. In this case, the scientific workflow description has to be adapted
in accordance with the number and distribution of data. To do it, it can be required to break down the workflow in
several parts that can be executed in different servers. A common solution is to the divide large data collections into
several small chunks in order to allow a similar parallelization. In this case, the number of chunks and their size have
to be determined dynamically during run-time.

This requirement could be considered not as a real dynamicity requirement. As it has been described, it can be
previewed before the workflow execution and, in this way, no modifications have to be performed during run-time to
the workflow abstract description. Nevertheless, in more cases, it is required to change the workflow instance (abstract-
to-concrete transformations, data, resources or services’ instances) and, in this way, we consider it as a dynamicity
requirement.

4.2.8 UR-8: Adaptations from the Workflow Execution Environment

The scenario E indicates that the resources available to execute the tasks involved in scientific workflows are changing
continuously. In other way, a main basic need is to execute the same workflow in different computational systems.
In addition, scientific workflows are usually executed under efficiency constrains, requiring the use of computational
capabilities in a flexible way in order to obtain performances as high as possible. Therefore, the workflow execution
system needs to perform its work in a dynamic way, involving issues such as: the assignment of resources to tasks,
the transfer of data between tasks, etc. The execution system should perform these adaptations in an autonomous
way, without requiring the user interactivity neither the description of special construct in the scientific workflow
specification.

4.3 Analysis of the Identified Requirements
The dynamicity requirements introduced in this section are intended to capture the common needs in this field in
a generic way. Challenges in approaching the support of dynamicity requirements stem from the fact that user ex-
pectations and needs vary greatly. Many users typically want to be able to focus solely on the scientific aspects of
the problem. However, other users may want to look deeper into the workflow execution and guide the mapping
process, perhaps indicating preferred compute resources and data sources. Therefore, the establishment of specific
requirements depends of the concrete problem to a long extent.

It is important to notice that these requirements can not be considered independently, but they are co-dependent.
This is clearly evident in the case of monitoring and user interaction. In order to support the second requirement it is
quite obvious that the first one should be solved already. Anyway, by distinguishing between the two requirements it
is possible to approach each one step by step, focusing the attention in one concern at each time and simplifying the
whole problem. In addition, requirements such as monitoring can be considering in a scenario without requiring user
modifications.

Table 1 shows a summary of the requirements and their relationships with the proposed scenarios. It is quite
obvious that the different requirements are distributed in the several scenarios. Anyway, in general it is possible to
distinguish between two great sets of requirements. In the one hand, the requirements oriented towards the human user
operation. In the other hand, the requirements oriented towards autonomous execution systems. Both sets share the
first four usability requirements. Anyway, it is quite common to conceive solutions involving requirements for each
group.

CoreGRID TR-0162 17

Table 1: Relationship between dynamicity requirements and scenarios in scientific workflows
Scenario A B C D E
CR-1: Workflow Abstract Description X X
CR-2: Abstract-to-Concrete Transform. X X
CR-3: Data X X X
CR-4: Resources X X
CR-5: Services’ Instances X X
UR-1: Monitoring X X
UR-2: Automatic Control X X X X X
UR-3: Reproducibility X
UR-4: “Smart” Re-runs X X
UR-5: Steering X X
UR-6: User Modifications X X
UR-7: Adaptations from the Wf. Language X X X
UR-8: Adaptations from the Wf. Execution Environment X X

5 Existing Techniques to Support Dynamicity
This section reviews some existing techniques used to support dynamicity in current scientific workflows. These
techniques are classified in the following two groups:

• Proposals at the Modeling Language Level. These techniques are modeling languages mechanisms used to
create workflow specifications. They have to be applied during the design-time, but they also require appropriate
processing during run-time.

• Proposals at the Execution Level. These techniques are carried by the executing system. Contrary to the pre-
vious case, these techniques do not require any action during the design-time and they have to be performed
transparently for the user during run-time.

Next sections introduce some of the main techniques in accordance with this two level classification.

5.1 Techniques at the Modeling Language Level
The dynamicity techniques at the modeling language level involve issues about the general structure of the language
and about specific constructs. This section analyzes the following four techniques: (i) modular and hierarchical design
of scientific workflow descriptions; (ii) abstract specification of task requirements; (iii) semantic task description; and
(iv) task placeholders.

5.1.1 Modular and Hierarchical Design

Modular design is related with the aggregation of workflow tasks into modules that are operated as “back boxes”,
each having its own variables, constraints, event handlers, etc. In real practice, modularization is usually derived into a
hierarchical structure, enabling that each module at a certain level is broken down into several modules at a more depth
level [40]. These modular and hierarchical designs are appropriate to control the complexity of the workflows and to
support some of the dynamicity requirements. In the one hand, by modularizing workflows, workflow components
can be made sufficiently scalable and reliable to serve as reusable units. In the other hand, failure in one module can
be controlled and managed locally, facilitating the performance of required changes without affecting to the whole
workflow.

The hierarchical design approach also facilitates the refinement of abstract workflow descriptions at runtime. This
idea is complemented with the consideration of the workflow enactment in an interpreted way, in contrast with the
complete compilation of the workflow abstract description before the execution. This allows the just-in-time translation
of the modifications from the abstract description to the concrete code, facilitating the performance of changes.

CoreGRID TR-0162 18

5.1.2 Abstract Specification of Task Requirements

This technique involves the description of workflows without specifying a binding of each task to a concrete resource
or service instance, so the bindings can be added at run-time [40]. Performance Contracts are a refinement of this
technique, involving the definition of the computational needs for each task. The reason for this technique is found
in the dynamism of the executing (e.g., Grid) environment: the resources available are not guaranteed and may be
switched off or altered with time. Therefore, if someone is using addresses (names) of such resources to build a
workflow she risks the possibility that in the future the workflow will no longer be executable. In order to overcome
at the level of this obstacle, the solution is to provide an abstract layer in resources’ identification. The key idea is
that the names used by the workflow designer will not become outdated due to changes in the environment. In case
of the service approach, in order to abstract away from the certain instances of services published in the Grid, oa
concept of an abstract service which could be dynamically mapped on the realization(s) available at the execution time
is proposed.

5.1.3 Semantic Task Description

This technique involves the semantic description of a task, but not the concrete details about what has to be performed.
In this way, during run-time the task can be developed in accordance with the execution of different processes, de-
pending on the previous results, the availability of resources, the time-constraints, etc. Semantic mechanisms are
proposed that derive how tasks have to be developed eventually. This technique is also used to facilitate the dynamic
composition of workflows, helping the user to make decisions and guiding the user in developing semantically correct
workflows.

5.1.4 Task Placeholders

Task Placeholders can be defined as “empty tasks” that can be included in a workflow specification during design-time.
In addition, it is explicitly stated that the task specification has to be performed during run-time before its execution. In
this way, complex problems are encapsulated and their solution can be delayed. This concept of placeholder task has
been proposed in Business workflows [22] and in some scientific workflow systems, such as Kepler where Placeholders
are named as Frames [62].

5.2 Techniques at the Execution Level
The proposals at the execution level involve automatic actions performed by the execution system without the need
of human control. Many of the existing techniques are related with fault tolerance and they are analyzed in the
following section. There exist other techniques, such as refinement and interpreted execution, that can be related with
mechanisms described in the modeling language section. Finally, specific runtime techniques as checkpointing and
provenance are also analyzed.

5.2.1 Techniques Related with Fault Tolerance

The existing literature distinguish between task- and workflow-level fault tolerance [85, 44]. The former is about faults
that happen during the execution of single tasks while the latter manipulates the structure of the workflow to deal with
faults dynamically.

At the task level, upon detecting a failure, the task is rescheduled to either the same or to another resource for
another try. Task-level techniques are:

• Retry. It simply tries to execute the same task on the same resource.

• Alternate Resource. The failed task is submitted to other resource.

• Checkpoint/restart. Moves the failed tasks transparently to other resources, so that the task can continue its
execution from the point of failure.

• Replication. The same task is run simultaneously on different resources to ensure task execution provided that
at least one of the replicas does not fail.

CoreGRID TR-0162 19

At workflow level redundancy, data and workflow replication are proposed as strategies to tackle with faults.
Workflow-level techniques include

• Alternate Task. Another implementation is executed of a certain task if the previous one failed.

• Redundancy. Multiple alternative implementations of the task are executed simultaneously.

• User-defined Exception Handling. It allows the user to specify a special treatment for a certain failure of a task
in the workflow specification.

• Rescue Workflow. Failed tasks are ignored and then a rescue workflow is executed to generate a report about
failed tasks.

In order to detect faults Performance Contracts can be monitored to control whether tasks are executed properly
or whether they should be migrated.

5.2.2 Workflow Refinement

The tasks involved in a workflow may be performed using different algorithms, each of which may have multiple
implementations (e.g., different execution architectures: Linux vs. MS Windows). The mapping of tasks to imple-
mentations takes place at the run-time and can be considered as part of the Abstract-to-Concrete transformation stage.
At this mapping it is possible to consider several manipulations in order to produce a more optimal workflow [57]:

• Re-ordering of tasks. Changing the order in which tasks are intended to be performed.

• Insertion of additional tasks. For example, compression of image files.

• Workflow Substitution. For example, in accordance with conditions of semantic equivalence.

• Task Substitution. As tasks can have multiple implementations, which may be suited better to different input
types.

5.2.3 Interpreted Execution

Two main approaches can be observed towards the execution of scientific workflows: compiled and executed. In the
compiled approach, the workflow description performed in a certain modeling language is completely “translated” to a
runable form before initiating the execution. In the interpreted approach, the workflow specification is not “translated”
into any runnable form, but it is read and processed step by step. As in other areas, the compiled approach is faster,
while the interpreted approach gives more opportunities to perform dynamic changes. Clearly, in the interpreted
approach the changes to parts of the abstract workflow that have not been executed at a certain point can be performed
for free. Nevertheless, the adoption of an interpreted approach is not enough to support the dynamicity requirement,
because it is also necessary to take into account the execution state. If the part of the workflow specification to be
changed has been executed already, more actions need to be performed in order to re-start the workflow at a previous
stage by modifying the execution state. A key point is that the workflow execution should not be re-started from the
beginning, but in a point as close as possible to the part changed, taking advantage of the already performed tasks.
This is more important in long-lasting workflows.

Mixed approaches between compilation and interpretation can be found, as for example “lazy compilation” in
which the compilation is performed as late as possible. In this case, only small portions of the workflow are “translated”
ahead of time and then executed before progressing further. An application of the lazy compilation is to optimize the
workflow execution with respect to a given criteria [40]. This dynamism allows for as-late-as-possible decisions to
allow the scheduling based on the most recent resources’ information.

5.2.4 Checkpointing

Checkpointing allows to backtrack (in the case of a change or event a system failure) to a previous saved state without
starting over from scratch [55]. Usually, it is also related with the specification of “hotspots”. A hotspot is a marked
stage in the workflow specification that indicates when the state of the workflow instance has to be persisted.

CoreGRID TR-0162 20

It is possible to distinguish between light- and heavy-weight checkpointing. Light-weight checkpointing saves
only the current location of the intermediate results, not the data itself. It is fast, but restarting can only work as long as
data its available at its original location. Heavy-weight checkpointing saves all the intermediate data to a place, where
it can be kept as long as it is needed.

5.2.5 Provenance

A main requirement in scientific workflows is reproducibility, as it has been shown in a previous section. Many
workflow modeling languages enable to indicate in the workflow description what intermediate results have to be
stored to support such a requirement. Nevertheless, this is not an appropriate solution as it demands an important
effort from the final user. Automatic solutions to capture and manage the results generated, the algorithms applied, the
input data and parameters used are proposed as Provenance techniques. Many authors perceive provenance [36, 59]
as a crucial component of workflow systems that can help scientists to interpret, validate and ensure reproducibility of
their scientific analysis and processes.

6 Dynamicity in Current Scientific Workflow Systems
This section analyzes the dynamicity support available in some of the most well-known scientific workflow systems.
This review has been performed in accordance with the information available in the included references.

6.1 Askalon
Askalon10 builds upon its own XML-based workflow language called Askalon Grid Workflow language (AGWL)
[30, 31, 73]. This system includes an UML based workflow composition tool, named as Teuta, to enable the authoring
of scientific workflows and the automatic generation of AGWL XML documents.

AGWL is a resource-based workflow specification language. A scientific workflow is seen as a collection of com-
putational tasks to be processed in a well-defined order to accomplish a specific goal. AGWL enables the specification
of scientific workflows at an abstract level [40]. It works at a high-level of abstraction without dealing with implemen-
tation details. At this high level, tasks correspond mostly to computational entities and the specification of its input
and output data. There is no notion of the implementation of tasks, how input data is delivered to tasks, how tasks
are invoked or terminated, etc. Performance contracts for each task can be specified to indicate the computational
resource needs. In addition, it supports hierarchical workflow composition through import elements, that enable to
import a (sub-) workflow into another workflow. In other way, AGWL follows a data-driven modeling approach [30],
but it also includes control-flow links. It adds complex constructs such as parallel loops with pre- and post-conditions,
synchronization mechanism, conditional branches (e.g., switch, if/then/else), event-based selection of activities, etc.
It also includes several data collection operators, enabling to break down a large data set into several small parts. In
some operators the size of the parts is known during the design-time, while other operators enable to produce parts
whose size is determined “dynamically” during the run-time [73].

The Askalon infrastructure transforms the AGWL XML documents to a Concrete Grid Workflow Language (CGWL).
CGWL adds information needed for the execution of the workflow. Particularly, it is indicated how tasks are actually
implemented, how they are deployed, invoked and terminated; how data is transferred; etc. The output of the CGWL
“compilation” is also an XML document that is used to execute the workflow.

Askalon works on a Grid Resource Management System callled GridARM (Askalon’s Grid Resource Management
System). This GridARM System comprises aspects from resource matching to reservation mechanisms, in order to
provide a scalable resource management. An Askalon Scheduling Engine queries the GridARM to receive information
about how activities can be deployed on individual resources. The Scheduling Engine is responsible for actual schedul-
ing of the workflows. It receives the CGWL XML document and it queries the resource manager (GridARM) to map
the tasks to resources. Askalon has developed a light-weight just-in-time scheduling strategy [75]. This strategy has
been used to support dynamic scheduling of scientific workflows in Grids [72] adapting to the existing resource avail-
ability and conditions. It uses an hybrid approach to schedule single workflow applications based on the following two
algorithms: (i) static scheduling, as a solution to an NP-complete optimization problem; and (ii) dynamic scheduling,

10Askalon Web site at http://www.dps.uibk.ac.at/projects/brokerage/

CoreGRID TR-0162 21

based on the repeated invocation of the static scheduling algorithm at well-defined events depending on the Grid re-
source load variation. The scheduler implements different fault-tolerance and fair-sharing policies. For instance, the
jobs failed can be restarted or submitted to other resources. It checks Performance Contracts during run-time in order
to detect any possible problem. These techniques are complemented with the option to use checkpoint and roll back
solutions. In addition runtime steering and dynamicity are mentioned in [71], but this functionality is not detailed.

6.2 Java CoG Kit - Karajan
The Java Commodity Grid (CoG) Kit11 is a layered software architecture and framework to facilitate the use, pro-
gramming and management of Grids.As part of this framework, a workflow component repository is proposed [82]. A
workflow component is a piece of a process description, namely: a task. This repository is intended to support dynami-
cally changing workflows as the workflow engine follows an interpreted approach. The framework allows the dynamic
inclusion of workflow components through the use of an include statement, that enables to fetch the component from
the repository and to evaluate the contents at runtime. Due to the ability of the workflow system to dynamically load
workflow components it is possible to design dynamically changing workflows dependent on the state. This is an
event-based solution.

Karajan [51] is the Grid task management language and execution engine developed as part of this Java CoG
Toolkit. It aims to provide the scientific community with an easy-to-use tool to define and manage complex jobs on
computational Grids, while offering some advanced features, such as dynamic execution. The workflow language
introduce the concept of element.

6.3 Kepler
Kepler [55] is a open-source graphical workflow system. Kepler is build upon the Ptolemy II framework, developed at
the University of California at Berkeley, that is a mature dataflow-oriented workflow architecture. The Kepler project
has extended Ptolemy II towards scientific workflows through adding support for Web Service invocations and access
to Grid resources. The approach is therefore both resource based and service based.

Ptolomy II [52] is a Java-based environment for heterogeneous modeling, simulation and design of concurrent
systems. The goal of Ptolomy II is to enable the building of models based on the composition of components called
actors, namely: tasks. Actors are encapsulations of parametrized actions performed on input tokens to produce output
tokens. Inputs and outputs are communicated through ports within the actors. They provide the common abstraction
used to wrap different types of software components, including sub-workflows (hierarchical workflows), Web and Grid
services. The interaction between the actors is defined by a Model of Computation (e.g., continuous time, discrete
event, synchronous dataflow).

Processes in Kepler are represented as Directed Acyclic Graphs (DAGs) in accordance with Modeling Markup
Language (MoML). This language includes both data and control constructs (e.g., loops). Kepler allows the actor
communication (dataflow) concerns to be separated from the overall workflow coordination, which is defined in a
separate component called a Director. Concrete actors can be hierarchically composed and orchestrated by different
directors (schedulers).

The analysis of dynamicity support in Kepler is quite difficult. The existing literature has been performed by
different authors that maintain different points and introduce unrelated proposals. Next, several proposals related with
dynamicity are introduced:

• In Ptolemy II there is the concept of mutation that enables changes in workflow structure at runtime.

• Accordingly to [40] Kepler does not bind workflow descriptions directly with the realizations of their building
elements, but in practice it works as this. A common assumption in Kepler is that workflow is static and must
be completely specified before orchestration. In this way, the performance of changes to the abstract workflow
during run-time is not allowed.

• In [63] an extension to Kepler is proposed in order to support dynamic binding of resources, separating the
design time from the run-time. Nevertheless, they do not consider the change of the workflow definition during
the run-time and it is a very initial proposal.

11Java CoG Grid Wiki Web page at http://wiki.cogkit.org/index.php/Main Page

CoreGRID TR-0162 22

• In other way, Kepler supports ”human in the loop“ by mailing users using the ”mail“ actor (a specific Kepler
task) to notify them about specific situations and it also has ”form“ actors (another kind of specific task) to
request users for inputs during flow execution. In addition, the execution system has start, pause and stop
buttons (”VCR“-like controller) for the user to control workflow execution during execution of the workflow.

• A task placeholder solution is proposed in [62, 15] to model abstract tasks and to enable the dynamic embedding
during run-time in an automatic way. Tasks can be partially specified via abstract actors called Frames. The
behavior of a frame is determined at runtime by embedding dynamically an appropriate component.

• Higher-order controls that allow a functional approach to workflow design are introduced in [58, 62]. These
controls are similar to the Askalon data collection operators involving collection-aware and list comprehension
operators. The goal is to hide the controls that are peripheral to the goal of the workflow. These controls are
oriented to the sole purpose of routine manipulation of complex scientific data (e.g., collection or list-based
input) or for various exception handlings. The collection-aware tasks allow to simplify the workflow (as control
flow controls can be eliminated) and allow reuse of the same workflow with varying nested complex data.

• A provenance system for Kepler with the support of ”smart“ re-runs is proposed in [7].

6.4 KW-f Grid
The Knowledge-based Workflow System for Grid Applications (KW-f Grid12) proposes a multi-level abstraction and
semantic-based solution to facilitate both the automatic specification of scientific workflows and the de-coupling be-
tween tasks and resources or services.

The project includes the development of several languages: GWorkflowDL [6, 40, 61] and GJobDL [42], GRe-
sourcesDL and GTaskDL. The GWorkflowDL is a solution based on High-Level Petri Nets (HLPN). Transitions are
considered as service operations and tokens as workflow data. This model is intended to support control flow and
data flow, the dynamic binding of services and the change of the workflow definition during run-time. Therefore, it is
proposed to solve the problems of changing resources and changes in the workflow description related with abstraction.

This proposal involves multiple levels of abstractness (cf. figure 8). The consideration of multiple abstraction
levels, inherited from the HLPN basics, helps to express the application logic on sufficiently high level for the end
user to comprehend it and for the workflow to be reusable. A first level of abstractness is related to the automatic
specification of scientific workflows in accordance with an ontology. The user indicates the result in which she is
interested. The use of the ontology enables to obtain the workflow specification to produce such a result. This is a
solution that can be applied dynamically to help the final users to specify certain sub-workflows during runtime, as
these users usually are not experts in workflow composition.

The Grid Workflow Execution Service (GWES) [41] is intended to support dynamic and interactive execution
and visualization of distributed workflows. The workflow mapping is dynamic and just-in-time. The dynamism is
supported as it is possible the runtime refinement of the workflow elements that are invoked and the lazy scheduling
strategies that use the more recent information available.

6.5 Pegasus
Planning for Execution in Grids (Pegasus13) [25] is a workflow mapping engine developed and used as part of several
NSF ITR projects (GriPhyN14, NVO, and SCEC-CME). It is focused on data intensive applications related with atomic
physics, astronomy, biology, etc.

The scientific workflows can be modeled using a Virtual Data Language (VDL15) at a high level of abstraction. It
enables to specify dependencies among tasks using basic elements, such as: transformation, derivation and innovation.
The workflow specification is performed using a tool called Chimera. It provides a catalog of programs that can be
used to compose workflow specifications and track the execution automatically. In addition, workflow specifications
can be composed automatically by indicating the desired output result [27].

12KW-f Grid Web site at http://www.kwfgrid.eu/
13Pegasus Web site at http://pegasus.isi.edu/
14GriPhyN Web site at http://www.griphyn.org/
15VDL Web page at http://www.ci.uchicago.edu/wiki/bin/view/VDS/VDSWeb/WebMain

CoreGRID TR-0162 23

Figure 8: The abstraction levels that are supported by the GWorkflowDL and the GWES (image taken from [41])

The Pegasus system receives a VDL document with a workflow specification and generates a concrete workflow.
The resource brokering is performed at this stage, given the description of the resources required by a task and the
description of resources’ capabilities. This concrete workflow has a DAG structure as it is executed by the Pegasus en-
gine that is Condor DAGMan. Condor Directed Acyclic Graph Manager (DAGMan16) provides a workflow engine that
manages Condor jobs organized as Directed Acyclic Graphs (DAGs). It basically allows the description of precedence
constraints between Condor jobs. A weakness of this solution is that planners must operate on an entire workflow
statically and execution sites can not be changed after a process is initiated. Therefore, it does not support dynamic
changes. Nevertheless, intermediary results can be saved to support monitoring, history/log and reproducibility.

A successor of this system is Swift17. It is a system for the rapid and reliable specification, execution,and manage-
ment of large-scale science and engineering workflows [86]. It supports applications that execute many tasks coupled
by disk-resident datasets (as is common, for example, when analyzing large quantities of data or performing parameter
studies or ensemble simulations). Swift integrates CoG Karajan, see section 6.2. It adds support for high-level abstract
specification of large parallel computations, data abstraction and workflow restart.

6.6 Taverna
Taverna [65] was designed in the context of the myGrid e-Science UK project. It is an open-source, Grid-aware
workflow management system. Taverna is implemented as a service-oriented architecture, based on Web service
standards. Taverna includes a service discovery facility enabling to point at a single Web service or a site with links to
multiple Web services.

The Simple Conceptual Unified Flow Language (SCUFL) workflow language was developed in this project [65].
It is a high level XML-based conceptual language allowing a user to specify a workflow through groups of local or
remote services which are connected with data links (providing data flow) and control links (allowing coordination of
services not connected through data flow). SCULF follows a data-oriented approach, provides support for processing
data collections through implicit interaction mechanisms, such as the cross and dot product operators for data lists
(collections).

Provenance plays an integral part in Taverna, allowing users to capture and inspect details such as who conducted
the experiment, what services were used and what results were obtained. Accordingly to [40] Taverna system bind

16Condor DAGMan Web site at http://www.cs.wisc.edu/condor/dagman/
17Swift Web site at http://www.ci.uchicago.edu/swift/

CoreGRID TR-0162 24

workflow descriptions directly with the realizations of their building elements. In this way, it lacks any chance of
dynamism.

6.7 Triana
Triana [81] is an integrated and generic workflow-based Problem Solving Environment and a test application for the
GridLab project 18. It is designed to define, process, analyze, manage, execute and monitor Grid workflows.

Triana follows both a resource oriented and a service oriented approaches. It manages two different interfaces to
enable both kinds of operation: GAP (Grid Application Prototype) interface for service oriented tasks and GAT (Grid
Application Toolkit) API for Grid oriented tasks. It allows the use of OGSA Grid services. Triana has been linked to
the Pegasus execution planner for Frid jobs in order to create workflows to be executed on the Condor Frid system.
Triana also contains JXTA based peer-to-peer module for cycle stealing that forms the basis of the project vision of a
Consumer Grid, similar to the SETI@HOME project.

The workflow language is based on dataflow constructs, but it also contains many control flow operators. Loops
(e.g., do, while) and execution branching (e.g., if/then) can be used to control the workflows. Triana supports multiple
languages by allowing different workflow readers/writers to be plugged in, including: WSFL, DAG, BPEL and Petri
net formats. The workflows can be multi-level and parts of workflow can be grouped to sub-workflows in a hierarchical
way.

7 Differences in Dynamicity between Scientific and Business Workflows
Historically, business workflows have roots going back to office automation systems of the 1970’s and 80’s and gained
momentum in the 90’s under different names including business process modeling and business process engineering.
More recently, the business workflow proposals have gained some influence in the Web services arena. For example,
the Business Process Execution Language for Web Services, a merger of two earlier standards: IBM’s WSFL and
Microsoft’s XLANG.

The question about if there are any difference between business workflows and other kinds of workflows is a
recurrent one. In particular, this question has been considered by several researches [20, 51, 55, 58], identifying the
following distinctions between business and scientific workflows:

• Business workflows are task oriented while scientific workflows are data-flow oriented. Scientific workflows
use to involve the transportation and analysis of large quantities of data between distributed repositories.

• In business workflows documents are modified, but they still are identifiable through the process. Scientific
workflows demand language constructs to manage and distribute data elements: iterations over lists (foreach),
filtering, generic & higher-order operations (e.g., zip, map), etc.

• Scientific workflows involve problems with large data sets: volume, complexity, heterogeneity. Sometimes data
is produced over a long time period. In these cases, it is not desirable to wait to initiate the following task until
all the data has been produced.

• Scientific workflows need the involvement of large computational resources, requiring the access to Grids.

• Scientific workflows need for rich user interaction and workflow Steering: pause/revise/resume; select and
branch.

• Scientific workflows need for persistence of intermediate products and provenance.

In general, the requirements of business workflows and scientific workflows are quite similar, but scientific work-
flows use to require the management of large data sets, the operation of a large amount of computational resources
and take a long time to finish. Taking into account these issues, dynamicity has been analyzed in this report as a main
requirement in scientific workflows, but it is also required in business workflows [49]. Anyway, a main difference is
that business workflows are less exploratory and evolving in nature than scientific workflows [13, 36]. The support
of business workflows is mainly focused towards well defined processes, working on stable data sets and executed in
stable executing infrastructures. In the case of scientific workflows, as it has been shown, the processes are not always
very well stablished, data elements are continuously evolving and the executing infrastructure is unestable.

18GridLab project Web site http://www.gridlab.org

CoreGRID TR-0162 25

8 Conclusions
Scientific workflows are being used to support research in many different domains. This technology has been devel-
oped to facilitate the management of scientific experiments and activities involving large amounts of data that have
to be processed at several computational-intensive stages. Common scientists are not experts in the management of
information and communication technologies and, therefore, they need solutions at an appropriate level of abstraction
that enables the application of these technologies to scientific problems. The basics of the workflow solution consisting
on the separation between the specification stage and the execution stage is a natural one. As a result, scientists can
focus on their scientific problems while computer engineers can focus on the development of compuational support
systems.

In this report we have analyzed dynamicity as a main requirement towards the appropriate support of scientific
workflows. Obviously, scientific workflows vary in their requirements and the technologies they use depending of the
disciplines involved. Anyway, we have found that it is possible to unify these requirements and come up with a set of
common requirements useful for multiple disciplines. In a first scenario, we have shown how the basic nature of the
scientific method is intrinsically dynamic. In other cases, the problems to be solved involve the management of data
that is produced dynamically or tasks that change during performance. In addition, the computational infrastructure
can also introduce variations that should also be supported. Finally, we have obtained a set of dynamicity requirements
to provide a clear view of the problems that need to be solved.

References
[1] An Introduction to Scientific Research. McGraw-Hill Book Comp., 1952.

[2] W. M. P. Van Der Aalst, A. H. M. Ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow patterns. Distrib.
Parallel Databases, 14(1):5–51, 2003.

[3] Anastassia Ailamaki, Yannis E. Ioannidis, and Miron Livny. Scientific workflow management by database man-
agement. In SSDBM ’98: Proceedings of the 10th International Conference on Scientific and Statistical Database
Management, pages 190–199, Washington, DC, USA, 1998. IEEE Computer Society.

[4] Asif Akram, David Meredith, and Rob Allan. Application of business process execution language to scientific
workflows. International Transactions on Systems Science and Applications, 1(3):289–302, 2006.

[5] M. Allen. Do-it-yourself climate prediction. Nature, 401:642, oct 1999.

[6] Martin Alt, Andreas Hoheisel, Hans Werner Pohl, and Sergei Gorlatch. A grid workflow language using high-
level petri nets. In Roman Wyrzykowski, Jack Dongarra, Norbert Meyer, and Jerzy Wasniewski, editors, PPAM,
volume 3911 of Lecture Notes in Computer Science, pages 715–722. Springer, 2005.

[7] I. Altintas, O. Barney, Z. Cheng, T. Critchlow, B. Ludaescher, S.G. Parker, A. Shoshani, and M. Vouk. Acceler-
ating the scientific exploration process with scientific workflows. J. Phys. : Conf. Ser., 46:468–478, 2006.

[8] Patrick Amestoy, Michel Dayd, Ronan Guivarch, Christophe Hamerling, and Marc Pantel. Use of Scenar-
ios for Generating Dynamic Execution Workflows over the Grid within the Grid-TLSE project. In Theodore
Simos and Georgios Psihoyios, editors, International E-Conference on Computer Science, Electronic Confer-
ence, 10/07/06-14/07/06, volume 8 of Lecture Series on Computer and Computational Science, pages 1–11,
http://www.brill.nl, septembre 2007. BRILL.

[9] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. Seti@home: an experiment in
public-resource computing. Communications of the ACM, 45(11):56–61, November 2002.

[10] Adam Baker and Jano van Hemert. Scientific workflow: A survery and research directions. In Proceedings of
the Third Grid Applications and Middleware Workshop (GAMW’2007), Gdansk, Poland, September 9-12 2007.

[11] Jean-Pierre Banâtre, Pascal Fradet, and Yann Radenac. Programming self-organizing systems with the higher-
order chemical language. International Journal of Unconventional Computing, 3(3):161–177, 2007.

CoreGRID TR-0162 26

[12] Jean-Pierre Banâtre and Daniel Le Métayer. Programming by multiset transformation. Commun. ACM, 36(1):98–
111, 1993.

[13] Roger Barga and Dennis Gannon. Scientific versus Business Workflows, chapter 2, pages 9–16. In [80], 2007.

[14] Louis Bavoil, Steven P. Callahan, Carlos Eduardo Scheidegger, Huy T. Vo, Patricia Crossno, Cludio T. Silva, and
Juliana Freire. Vistrails: Enabling interactive multiple-view visualizations. In IEEE Visualization, page 18. IEEE
Computer Society, 2005.

[15] Chad Berkley, Shawn Bowers, Matthew Jones, Bertram Ludäscher, Mark Schildhauer, and Jing Tao. Incor-
porating semantics in scientific workflow authoring. In SSDBM’2005: Proceedings of the 17th international
conference on Scientific and statistical database management, pages 75–78, Berkeley, CA, US, 2005. Lawrence
Berkeley Laboratory.

[16] Fran Berman, Geoffrey Fox, and Anthony J. G. Hey. Grid Computing: Making the Global Infrastructure a
Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[17] M. Burns, A. Rowland, D. Rueckert, J. Hajnal, K. Leung, D. Hill, and J. Vickers. Information extraction from
images (ixi): Grid services for medical imaging. In Proceedings of the DiDaMIC Workshop (MICCAI), Rennes,
France, 2004.

[18] Steven P. Callahan, Juliana Freire, Emanuele Santos, Carlos E. Scheidegger, Cláudio T. Silva, and Huy T. Vo.
Vistrails: visualization meets data management. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 745–747, New York, NY, USA, 2006. ACM.

[19] Yves Caniou, Eddy Caron, Hlne Courtois, Benjamin Depardon, and Romain Teyssier. Cosmological simulations
using grid middleware. IEEE, March 26 2007.

[20] Jinjun Chen and W.M.P. van der Aalst. On scientific workflow. IEEE Technical Committee on Scalable Comput-
ing Newsletter, 9(1), May 2007.

[21] D. Louis Collins, Johan Montagnat, Alex P. Zijdenbos, Alan C. Evans, and Douglas L. Arnold. Automated
estimation of brain volume in multiple sclerosis with biccr. In IPMI ’01: Proceedings of the 17th International
Conference on Information Processing in Medical Imaging, pages 141–147, London, UK, 2001. Springer-Verlag.

[22] Dynamic, extensible and context-aware exception handling for workflows. In OTM Conferences (1), pages 95–
112, 2007.

[23] Frederica Darema. Introduction to the iccs 2007 workshop on dynamic data driven applications systems. In
International Conference on Computational Science (1), pages 955–962, 2007.

[24] Frederica Darema and Mario Rotea. Dynamic data-driven applications systems. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, page 2, New York, NY, USA, 2006. ACM.

[25] Ewa Deelman, James Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Karan Vahi, Kent Blackburn, Albert
Lazzarini, Adam Arbree, Richard Cavanaugh, and Scott Koranda. Mapping abstract complex workflows onto
grid environments. Journal of Grid Computing, V1(1):25–39, March 2003.

[26] Ewa Deelman, Scott Callaghan, Edward Field, Hunter Francoeur, Robert Graves, Nitin Gupta, Vipin Gupta,
Thomas H. Jordan, Carl Kesselman, Philip Maechling, John Mehringer, Gaurang Mehta, David Okaya, Karan
Vahi, and Li Zhao. Managing large-scale workflow execution from resource provisioning to provenance tracking:
The cybershake example. In E-SCIENCE ’06: Proceedings of the Second IEEE International Conference on e-
Science and Grid Computing, page 14, Washington, DC, USA, 2006. IEEE Computer Society.

[27] Ewa Deelman and Yolanda Gil. Managing large-scale scientific workflows in distributed environments: Ex-
periences and challenges. In E-SCIENCE ’06: Proceedings of the Second IEEE International Conference on
e-Science and Grid Computing, page 144, Washington, DC, USA, 2006. IEEE Computer Society.

CoreGRID TR-0162 27

[28] K. Droegemeier, T. Baltzer, A. Wilson, M. Ramamurthy, and K. Lawrence. A new paradigm for mesoscale
meteorology: Grid and web service-oriented research and education in LEAD. In Proceedigns of the AMS
Conference.

[29] D. A. Bachelor et al. Simulation of fusion plasmas: Current status and future direction. Plasma Science and
Technology, 2007.

[30] T. Fahringer, S. Pllana, and A. Villazon. Agwl: Abstract grid workflow language. In Proceedings of the Interna-
tional Conference on Computational Science, Programming Paradigms for Grids and Metacomputing Systems,
Krakow, Poland, 2004. Springer-Verlag.

[31] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications with agwl: an abstract grid
workflow language. In CCGRID ’05: Proceedings of the Fifth IEEE International Symposium on Cluster Com-
puting and the Grid (CCGrid’05) - Volume 2, pages 676–685, Washington, DC, USA, 2005. IEEE Computer
Society.

[32] Geoffrey C. Fox and Dennis Gannon. Special issue: Workflow in grid systems: Editorials. Concurrency and
Computation : Practice & Experience, 18(10):1009–1019, 2006.

[33] Dennis Gannon, Beth Plale, Suresh Marru, Gopi Kandaswamy, Yogesh Simmhan, and Satoshi Shirasuna. Work-
flows for eScience: Scientific Workflows for Grids, chapter Dynamic, Adaptive Workflows for Mesoscale Mete-
orology. Springer-Verlag, 2007. In Press.

[34] Jr. George Chin, L. Ruby Leung, Karen Schuchardt, and Debbie Gracio. New paradigms in problem solving
environments for scientific computing. In IUI ’02: Proceedings of the 7th international conference on Intelligent
user interfaces, pages 39–46, New York, NY, USA, 2002. ACM.

[35] C. Germain, V. Breton, P. Clarysse, Y. Gaudeau, T. Glatard, E. Jeannot, Y. Legre, C. Loomis, I. Magnin, J. Mon-
tagnat, J.-M. Moureaux, A. Osorio, X. Pennec, and R. Texier. Grid-enabling medical image analysis. Journal of
Clinical Monitoring and Computing, 19(4-5):339–349, December 2005.

[36] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis Gannon, Carole Goble,
Miron Livny, Luc Moreau, and Jim Myers. Examining the challenges of scientific workflows. IEEE Computer,
40(12):26–34, December 2007.

[37] Tristan Glatard, Johan Montagnat, Diane Lingrand, and Xavier Pennec. Flexible and efficient workflow de-
ployement of data-intensive applications on grids with MOTEUR. International Journal of High Performance
Computing and Applications, 2007.

[38] Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltán Farkas, and Péter Kacsuk. Workflow Level Parametric
Study Support by MOTEUR and the P-GRADE Portal, chapter 18, pages 279–299. In [80], 2007.

[39] Daniel J. Goodman. Introduction and evaluation of martlet: a scientific workflow language for abstracted paral-
lelisation. In WWW ’07: Proceedings of the 16th international conference on World Wide Web, pages 983–992,
New York, NY, USA, 2007. ACM Press.

[40] Tomasz Gubala and Andreas Hoheisel. Highly dynamic workflow orchestration for scientific applications. In
CoreGRID Intergation Workshop 2006 (CIW06), pages 309–320. ACC CYFRONET AGH, 2006.

[41] Andreas Hoheisel. Grid workflow execution service ? dynamic and interactive execution and visualization of
distributed workflows. In Proceedings of the Cracow Grid Workshop 2006, 2006.

[42] Andreas Hoheisel and Uwe Der. An xml-based framework for loosely coupled applications on grid environments.
In Computational Science ? ICCS 2003, volume 2657 of Lecture Notes in Computer Science, pages 664–665.
Springer, 2003.

[43] David Hollingsworth. The workflow reference model. Technical Report TC00-1003, The Workflow Management
Coalition, Hampshire, UK, January 1995.

CoreGRID TR-0162 28

[44] Soonwook Hwang and Carl Kesselman. Gridworkflow: A flexible failure handling framework for the grid. hpdc,
00:126, 2003.

[45] A.S.Z.; Roos M.; Vasunin D.; de Laat C.; Hertzberger L.O.; Breit T.M. Inda, M.A.; Belloum. Interactive work-
flows in a virtual laboratory for e-bioscience: The sigwin-detector tool for gene expression analysis. e-Science
and Grid Computing, 2006. e-Science ’06. Second IEEE International Conference on, pages 19–19, Dec. 2006.

[46] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in dataflow programming languages.
ACM Comput. Surv., 36(1):1–34, 2004.

[47] Niels Joncheere, Wim Vanderperren, and Ragnhild Van Der Straeten. Requirements for a workflow system for
grid service composition. Lecture Notes in Computer Science, pages 365–374, 2006.

[48] Gail E. Kaiser, Stephen E. Dossick, Wenyu Jiang, Jack Jingshuang Yang, and Sonny Xi Ye. WWW-based
collaboration environments with distributed tool services. World Wide Web, 1(1):3–25, 1998.

[49] Peter J. Kammer, Gregory Alan Bolcer, Richard N. Taylor, Arthur S. Hitomi, and Mark Bergman. Techniques
for supporting dynamic and adaptive workflow. Computer Supported Cooperative Work, 9(3/4):269–292, 2000.

[50] Scott A. Klasky, Bertram Ludaescher, and Manish Parashar. The center for plasma edge simulation workflow re-
quirements. In ICDEW ’06: Proceedings of the 22nd International Conference on Data Engineering Workshops
(ICDEW’06), page 73, Washington, DC, USA, 2006. IEEE Computer Society.

[51] Gregor Laszewski and Mike Hategan. Workflow concepts of the java cog kit. Journal of Grid Computing,
3(3-4):239–258, September 2005.

[52] Edward A. Lee, C. Hylands, J. Janneck, J. Davis II, J. Liu, X. Liu, S. Neuendorffer, S. Sachs M. Stewart,
K. Vissers, and P. Whitaker. Overview of the ptolemy project. Technical Report UCB/ERL M01/11, EECS
Department, University of California, Berkeley, 2001.

[53] Lifeng Liu, Dominik Meier, Mariann Polgar-Turcsanyi, Pawel Karkocha, Rohit Bakshi, and Charles R. G.
Guttmann. Event-driven workflow management for medical image processing and analysis in a large image
database. In Proceedings of Distributed Databases and processing in Medical Image Computing, pages 74–83,
Rennes, France, October 2004.

[54] Bertram Ludaescher, Shawn Bowers, Timothy McPhillips, Norbert Podhorszki, and Norbert Podhorszki. Sci-
entific workflows: More e-science mileage from cyberinfrastructure. In E-SCIENCE ’06: Proceedings of the
Second IEEE International Conference on e-Science and Grid Computing, page 145, Washington, DC, USA,
2006. IEEE Computer Society.

[55] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger, Matthew Jones, Edward A. Lee,
Jing Tao, and Yang Zhao. Scientific workflow management and the kepler system. Concurrency and Computation
: Practice & Experience, 18(10):1039–1065, 2006.

[56] Ketan C. Maheshwari, Silvia D. Olabarriaga, Charl P. Botha, Jeroen G. Snel, Johan Alkemade, and Adam Bel-
loum. Problem solving environment for medical image analysis. In CBMS ’07: Proceedings of the Twentieth
IEEE International Symposium on Computer-Based Medical Systems, pages 165–170, Washington, DC, USA,
2007. IEEE Computer Society.

[57] Andrew Stephen McGough, Jeremy Cohen, John Darlington, Eleftheria Katsiri, William Lee, Sofia Panagiotidi,
and Yash Patel. An end-to-end workflow pipeline for large-scale grid computing. Journal Grid Computing,
3(3-4):259–281, 2005.

[58] Timothy M. McPhillips, Shawn Bowers, and Bertram Ludscher. Collection-oriented scientific workflows for
integrating and analyzing biological data. In Ulf Leser, Felix Naumann, and Barbara A. Eckman, editors, DILS,
volume 4075 of Lecture Notes in Computer Science, pages 248–263. Springer, 2006.

[59] Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of using provenance in e-science
experiments. Journal of Grid Computing, 5(1):1–25, 2007.

CoreGRID TR-0162 29

[60] Johan Montagnat. Procesing and analyzing large medical image sets. PhD thesis, University of Nice-Sophia
Antipolis, Sophia Antipolis, France, December 2006. HDR thesis.

[61] Falk Neubauer, Andreas Hoheisel, and Joachim Geiler. Workflow-based grid applications. Future Generation
Computer Systems, (22):6–15, 2006.

[62] Anne Hee Hiong Ngu, Nicholas Haasch, and Timothy McPhilips and. Technical report.

[63] Anne Hee Hiong Ngu, Nicholas Nicholas, Timothy McPhilips, Shawn M. Bowers, Bertram Ludaescher, and
Terence Critchlow. Flexible scientific workflows using frames and dynamic embedding. Technical Report
TXSTATE-CS-TR-2007-7, Texas State University, April 2007.

[64] H.; Goul M. Nichols, J.; Demirkan. Autonomic workflow execution in the grid. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions on, 36(3):353–364, May 2006.

[65] Tom Oinn, Matthew Addis Justin, Ferris, Darren Marvin, Martin Senger, Mark Greenwood, Tim Carver, Kevin
Glover, Matthew R. Pocock, Anil Wipat, and Peter Li. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics Journal., online, June 16, 2004.

[66] Slvia D. Olabarriaga, Jeroen G. Snel, Charl P. Botha, and Robert G. Belleman. Integrated support for medical
image analysis methods: from development to clinical application. IEEE Trans Inf Technol Biomed, 11(1):47–57,
2007.

[67] Stphane Operto, Jean Virieux, Patrick Amestoy, Luc Giraud, and Jean-Yves L’Excellent. 3d frequency-domain
finite-difference modeling of accoustic wave propagation using a masively parallel direct solver: a feasable study.
page 2265?2269, October 1-6 2006.

[68] C. Pautasso and G. Alonso. Parallel computing patterns for grid workflows. In Proc. of the 2006 Workshop on
Workflows in support for Large-Scale Science (WORKS 06), 2006.

[69] Cesare Pautasso. A flexible system for visual service composition. PhD thesis, ETH Zurich, Department of
Computer Science, 2004.

[70] Kassian Plankensteiner, Radu Prodan, Thomas Fahringer, Attila Kertesz, and Peter Kacsuk. Fault-tolerant be-
havior in state-of-the-art grid workflow management systems. Technical Report TR-0091, Coregrid, Institute on
Grid Information, Resource and Workflow Monitoring Services, October 2007.

[71] Radu Prodan. Online analysis and runtime steering of dynamic workflows in the askalon grid environment. In
CCGRID ’07: Proceedings of the Seventh IEEE International Symposium on Cluster Computing and the Grid,
pages 389–400, Washington, DC, USA, 2007. IEEE Computer Society.

[72] Radu Prodan and Thomas Fahringer. Dynamic scheduling of scientific workflow applications on the grid: a case
study. In SAC ’05: Proceedings of the 2005 ACM symposium on Applied computing, pages 687–694, New York,
NY, USA, 2005. ACM.

[73] Jun Qin and Thomas Fahringer. Advanced data flow support for scientific grid workflow applications. In In-
ternational Conference on High Performance Computing, Networking Storage and Analysis (Supercomputing).
IEEE Computer Society Press, November 2007.

[74] Jun Qin and Thomas Fahringer. Advanced Data Flow Support for Scientific Grid Workflow Applications. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis
(SC—07), Reno, NV, USA, November 10-16 2007. IEEE Computer Society Press.

[75] Jun Qin, Marek Wieczorek, Kassian Plankensteiner, and Thomas Fahringer. Towards a light-weight workflow
engine in the askalon grid environment. In CoreGRID European Network of Excellence Symposium. Springer
Verlag, 2007.

[76] A. Rowland, M. Burns, T. Hartkens, J. Hajnal, D. Rueckert, and D. Hill. Information extraction from images (ixi):
Image processing workflows using a grid enabled image database. In Proceedings of the DiDaMIC Workshop
(MICCAI), Rennes, France, 2004.

CoreGRID TR-0162 30

[77] Asbjorn Rygg, Jiro Sumitomo, and Paul Roe. A unified model of batch and interactive scientific workflow and
its implementation using windows workflow. In E-SCIENCE ’06: Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing, page 36, Washington, DC, USA, 2006. IEEE Computer Society.

[78] Matthew Shields. Control- Versus Data-Driven Workflows, chapter 11, pages 167–173. In [80], 2007.

[79] J. G. Snel, S. D. Olabarriaga, J. Alkemade, H. Gratama van Andel, A. J. Nederveen, C. B. Majoie, G. J. den
Heeten, M. van Straten, and R. G. Belleman. A distributed workflow management system for automated medical
image analysis and logistics. In CBMS ’06: Proceedings of the 19th IEEE Symposium on Computer-Based
Medical Systems, pages 733–738, Washington, DC, USA, 2006. IEEE Computer Society.

[80] Ian Taylor, Ewa Deelman, Dennis Gannon, and Matthew Shields. Workflows for e-Science. Springer-Verlag,
2007.

[81] Ian Taylor, Ian Wang, Matthew S. Shields, and Shalil Majithia. Distributed computing with triana on the grid.
Concurrency - Practice and Experience, 17(9):1197–1214, 2005.

[82] Gregor von Laszewski and Deepti Kodeboyina. A repository service for grid workflow components. In ICAS-
ICNS ’05: Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and In-
ternational Conference on Networking and Services, page 84, Washington, DC, USA, 2005. IEEE Computer
Society.

[83] Gosia Wrzesinska, Jason Maassen, and Henri E. Bal. Self-adaptive applications on the grid. In PPoPP ’07:
Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
121–129, New York, NY, USA, 2007. ACM.

[84] Yonghong Yan, Barbara Chapman, , and Babu Sundaram. Air quality forecasting on campus grid environment.
In Workshop on Grid Applications: from Early Adopters to Mainstream Users, GGF14.

[85] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for grid computing. SIGMOD Rec.,
34(3):44–49, September 2005.

[86] Yong Zhao, Mihael Hategan, Ben Clifford, Ian Foster, Gregor von Laszewski, Ioan Raicu, Tiberiu Stef-Praun,
and Mike Wilde. Swift: Fast, reliable, loosely coupled parallel computation. In Proceedings of the IEEE
International Workshop on Scientific Workflows, Salt Lake City, Utah, U.S.A., 2007.

[87] Zhiming Zhao, Adam Belloum, Hakan Yakali, Peter Sloot, and Bob Hertzberger. Dynamic workflow in a grid
enabled problem solving environment. In CIT ’05: Proceedings of the The Fifth International Conference on
Computer and Information Technology, pages 339–345, Washington, DC, USA, 2005. IEEE Computer Society.

CoreGRID TR-0162 31

