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Abstract

Grid computing promises to enable a reliable and easy-to-use computational infrastructure for e-Science. To
materialize this promise, Grids need to provide full automation from the experiment design to the final result. Often,
this automation relies on the execution of workflows, that is, of jobs comprising many inter-related computing and data
transfer tasks. While several Grid workflow execution toolsalready exist, not much is known about their workload.
This lack of knowledge hampers the development of new workflow scheduling algorithms, and slows the tuning
of existing ones. To address this situation, in this work we present an analysis of two workflow-based workload
traces from the Austrian Grid. We introduce a method for analyzing such traces, focused on the intrinsic and on
the environment-related characteristics of the workflows.Then, we analyze the workflows executed in the Austrian
Grid over the last two years. Finally, we identify six categories of workflows based on their intrinsic workflow
characteristics. We show that the six categories exhibit distinctive environment-related characteristics, and identify
the categories that are difficult to execute for common workflow schedulers.

1 Introduction

The Grid computing vision aims for an simple useable, dependable, and efficient computing architecture and structure.
For this vision to become reality, Grids must fully automatethe process that starts with experiment design and ends
with analysis results. In turn, the full automation necessarily involves the execution of workflows, that is, of jobs with a
task graph structure and comprising computing and data transfer tasks [12, 13]. While several Grid workflow execution
engines have recently emerged [17], not much is known about their demand, impacting adversely the evolution of
old and new workflow engines. To address this situation, in this work we analyze the workflow-based e-Science
applications executed in the Austrian Grid for the past two years.

Currently, there are no publicly available traces of workflow-based Grid workloads, that is, of Grid workloads that
include workflows. This lack of information hampers the testing and the tuning of existing workflow engines, and the
study and evolution of new workflow scheduling algorithms. Without proper testing workloads, workflow engines may
fail when facing high load or border cases of workload characteristics. Without detailed workload knowledge, tuning
lacks focus and leads to under-performing solutions. Without an understanding of real workloads, current research
studies use synthetically generated workflows, and are limited in scope and applicability. Moreover, evolution lacks
real problems, and may lead to impractical solutions. Understanding the characteristics of existing Grid workloads
is key to alleviating all these issues. As a first step towardsunderstanding Grid workflows, we study two long-term
workload traces from the Austrian Grid. The goal of this workis the analysis of the traces and not comparison of their
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underlaying environment. However, the data alone are insufficient: there is a need for new methods to extract and
analyze the workflow characteristics from the workload traces. Furthermore, there is a need to identify the class(es) of
workflows for which the execution environment yields distinctively poor performance. Our contribution is threefold:

1. We propose a method for analyzing the intrinsic and the environment-related characteristics of workflow-based
Grid workloads;

2. We apply the proposed method on two long-term Grid workload traces taken from the Austrian Grid;

3. Based on the results of the analysis, we identify six classes of workflows with distinct properties, facilitating
the identification of the classes which the execution environments can handle the worst to identify improvement
possibilities.

2 Background

In this section we present the background information necessary for following this work. We first introduce the
workload model used throughout this work. Then, we present DEE and EE2, the workflow engines that executed the
workflows investigated in this work.

2.1 A Workflow Model

We use for Grid workflows the model introduced by Coffman and Graham [12]. Formally, a workflow is a directed
graphG in which nodes are computational tasks, and the directed edges represent communication; we denote the
number of nodes and edges byN andE respectively. To begin a task, all its predecessor tasks andall communication
with that task as the sink must be finished. For simplicity, weconsider only directed acyclic graphs (DAGs), that
is, there does not exist a loop in the directed graph which mayrequire loop unrolling. We callroot a node without
predecessors; a DAG may have several roots. We further definea node’s level, derived from breadth-first traversal of
the task graph from its roots [2], as the minimal size of a pathfrom the top to this node (in number of edges); the
level of a root is 0. Finally, we call the maximum level of a leaf in the graph thegraph level, which we denote by
L − 1; we denote byL thegraph traversal height. Note that parameter sweeps and other batches of jobs [10] may be
considered as degenerate workflows withL = 1, and that master-worker applications can be seen as workflows with
L = 3 (including a final task to assemble the worker results).

Figure 1 (left) shows a sample workflow from ASKALON [4], defined by the user in the Abstract Grid Workflow
Language (AGWL) [5]. Figure 1 (right) depicts an instance ofthis example that has one iteration of the outermost
while loop. The number of nodesN is 11, the number of edgesE is 16, and the graph traversal heightL is 5.

2.2 The ASKALON Workflow Engine

The ASKALON Grid middleware [4] can execute via its workflow execution engine workflows specified in AGWL.
While execution, this abstract specification is instantiated, that is, the tasks are annotated with details concerningthe
used resources. ASKALON’s workflow execution engine features a fine grain event system which is implemented
as WSRF service and allows event-forwarding even through NAT or firewalls. An overview of this and other Grid
workflow systems can be found in the taxonomy of workflowsystems [17].

In the past two years, the ASKALON workflow execution engine evolved in two major steps. The first version,
DEE [3], focused on functionality. DEE’s primary shortcomings were the internal loop unrolling from the workflow
specification, and the complete scheduling at the start of the execution. To improve on scalability and on adaptability
to highly dynamic Grid environments, the second generationengine EE2 was developed [16]. The EE2 uses internally
a structure that is kept close to the AGWL specification and better scales for the execution of large workflows. Each
job that is ready for execution will dynamically be send to the best available Grid site at this moment.

3 A Method for Workflow-based Grid Workloads Analysis

In this section we introduce a method for analyzing workflow-based Grid workloads. The goal of our analysis is
to establish the main characteristics of the workload such that building a workflow-based Grid workload model is
greatly facilitated. For our method to be applicable, the analyzed traces need to be long-term (i.e. at least a month)
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Figure 1: A sample workflow: Wien2k [1]. (left) in AGWL. (right) a possible DAG.

and to provide sufficient statistical confidence (i.e., to include at least several hundreds of workflows each). From a
technical point of view, we extract for each workflow characteristic a comprehensive set of statistical properties (i.e.
min, max, average, std. deviation and quantiles). We also compute the empirical distribution of the characteristics.
For an overview of these statistical tools we refer to Jain’sclassical text [11].

Our method divides the characteristics into two classes, workflow-intrinsic and environment-related. We first
analyze the intrinsic workflow characteristics in Section 3.1, which allows us to identify the workflow classes that may
have different environment-related characteristics. Then, we analyze the environment-related characteristics forthe
complete workload data and per class in Section 3.2.

3.1 Intrinsic Workflow Characteristics

The intrinsic workflow characteristics refer to the size andthe structure of the workflows, and to their arrival pattern.
We assume that users are not influenced by the system properties (e.g. size) when defining their workload, and that
the submission of the workflows is independent from the stateof the system (though the submission of the tasks to the
Grid by the workflow engine may not be).

To characterize the workflow size and graph structure, we employ the following characteristics (listed in the
chronological order of their analysis within our method):

Number of nodes (N), Number of edges (E), Graph level (L);

Branching Factor (BF) defined as the ratio between the number of edgesE and the number of nodesN . The branch-
ing factor may have a high impact on the graph execution time:the higher the branching factor, the higher the
probability that a task’s execution is delayed due to waiting for its predecessors.

Work Size defined as task runtime of a task on a base platform. To computethe task work size we face the problem
of data coming from a heterogeneous environment: the same task may take different runtime when executed
by different resources. To compute the work size, we normalize the task runtime logged in the workload trace
with the ratio between the performance of the resource on which the task is executed and that of a base re-
source. Following the example of CERN’s WLCG, at over 50,000computing resources the largest Grid that
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Trace Source Duration Number of WFs Number of Tasks CPUdays.
T1 DEE 09/06-10/07 4,113 122k 152
T2 EE2 05/07-11/07 1,030 46k 41

Table 1: Workflow-based traces analyzed for this work. (WF stands for workflows.)

publishes size information, we express the resource performance in SPECInt2000 values. SPECInt2000 is a
collection of twelve benchmarks representative for industrial and scientific applications [7]. The choice of us-
ing the SPECInt2000 values is based on the implicit assumption that this benchmark is representative for the
applications executed in the studied workload trace.

Variability of the work size inside a workflow (WSV) defined as the ratio between the runtime of the longest and of
the shortest task. The higher the variability, the more difficult it is for a task or workflow runtime predictor [18]
to operate, leading to potentially low performance for the workflow scheduler.

Sequential execution pathdefined for a workflow as the sum of the work sizes of its tasks;

Critical execution path defined for the longest execution path in the workflow graph. Any delay of a task on this
path will result in a delay of the total executions end. [2].

3.2 Environment-Related Workflow Characteristics

The environment-related workflow characteristics are time-related (e.g., wait, run, and makespan), scheduler-related
(e.g., makespan vs. critical path), and failure-related (e.g., amount of failures).

We employ the following performance metrics:

Makespan defined for a workflow as the time elapsed between the workflow’s entering and exiting the system.

Speedup (S)defined as the ratio between a workflow’s makespan and its sequential execution path size.

Normalized Schedule Length (NSL) [13], defined as the ratio between a workflow’s makespan and its critical path
size.

Success Rate (SR)defined for a workflow as the percentage of tasks that finished correctly from the workflow tasks.

4 The Results

In this section we describe the long-term trace data collected from the Austrian Grid, and the results obtained when
applying the method described in the previous section to these data.

4.1 The Workload Traces

In this work we use two traces collected from the Austrian Grid over a period of more than one year. The T1 (T2) trace
was collected from the system using the DEE (the EE2) as workflow engine (see Section 2.2). Table 1 summarizes
the characteristics of the traces used in this work. Each of the traces contains information about more than a thousand
workflows, satisfying our analysis method’s input requirements.

The collected traces consist mostly of workflow test runs, albeit often of production workflows, done by the
developers of the system in order to find bugs and drive development. Thus, the results presented in this section should
be regarded as guiding, but not definitive, in establishing the characteristics of the Grid workflows.

4.2 The Intrinsic Workflow Characteristics

Figure 21 shows the graph size and structure of the workflows from both studied traces. The average number of tasks
per workflow is 30±702 for T1 and 44±91 for T2. The fact that the average is much higher than third quartile (25

1All CDF graphs in this paper are discrete as they map real values to their integral part before the accumulation.
2We use throughout this work the notationµ ± σ to denote a set of values with the averageµ and the standard deviationσ. Note that in some

cases the values below or equal to zero are not meaningful, e.g., for the number of tasks in the workflow.
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Figure 2: The workflow structure for T1 and T2. (top left) number of nodes. (top right) graph traversal height. (bottom)
average branching factor.

Class N L BF
Small <5 - -
Medium 5–100 - -
Large >100 - -
Branchy - - ≥1.0
Flat - ≤2 -

Table 2: Classes of workflows based on their size and structure properties.

and 31 for T1 and T2, respectively) indicates a skewed distribution, confirmed by Figure 2(bottom). For both traces,
75% of the workflows have fewer than 40 tasks, and 95% of the workflows have fewer than 200 tasks. The average
branching factor is 0.64±0.67 for T1 and 0.86±0.46 for T2. This indicates that users prefer to submit loosely-coupled
tasks, that is, tasks that do not depend on many previous results. Thus, the properties ofN and those ofE are very
similar (we have also validated this finding separately). The graph level is 3.73±14.04 for T1 and 2.25±1.0 for T2,
indicating that the new engine is mostly used for graphs withlittle depth. For T2, slightly over 80% of the workflows
have at most two levels.

Based on the results for the graph size and structure and experience from [10], we define the workflow classes
summarized in Table 2; mixed classes can also be formed. The Small, Medium, and Large classes refer to the workflow
size. The Branchy class contains workflows with more edges than usual. The Flat class contains workflows with at
most two levels. Throughout the rest of this work we focus on the following classes: Small/Medium/Large(all the
size-related classes), Branchy, Large and Flat, and Large and Branchy.

Figure 3 shows the CDF of the workflow tasks’ Work Size, in normalized seconds (the runtime on a machine with
a speed of 1000 SPECInt2000). While over 75% of the tasks takeless than 100 seconds, the other 25% can take up to
4 hours (half an hour) for T1 (T2). Around 25% of the large and flat tasks took over 350 seconds while only 2% of the
small tasks takes longer then 80 seconds. The medium runs have an overall lower task work size compared to the total
(all), while the large a higher size.

Figure 4 shows the CDF of the workflow tasks’ Work Size variability (see Section 3.1). More than 75% of the
workflows have a Work Size variability below an order of magnitude of the task runtime variability. The maximum
variability is over 3000 (150) for T1 (T2). Around 95% of the small workflows have a variability smaller then 5 while
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Figure 4: The distribution of the work size variability of the workflow tasks. (left) overall. (right) per workflow class.
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Figure 5: The distribution of the makespan of the workflows. (left) overall. (right) per workflow class.

approximately 20% of all the large workflows have a variability lower then 5.

4.3 The Environment-Related Workflow Characteristics

Figure 5 shows the CDF of the workflow makespan. Less than 5% ofthe T1 workflows take more than one hour;
none of the T2 workflows reach one hour. Over 50% of the workflows take less than 4 minutes. As expected large
workflows have a higher makespan than short ones.

Figure 6 shows the CDF of the workflow speedup. The average speed-up is 2.54±4.92 for T1 and 8.21±11.11 for
T2; the median is 1.15 for T1 and 4.61 for T2. The first quartilevalue is 0.41 for T1 and 1.70 for T2. This means that
for T1 the benefit of executing workflows is in general reduced; also for T1, 25% of the workflows are slowed down
by being executed as workflows as opposed to being executed sequentially on a single processor. For T2, the benefits
of Grid workflow execution are much more visible, with quantile Q1, the median, and the average well above 1. Over
75% of the large and flat workflows were able to achieve a speed up higher then 15. About 50% of the large workflow
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class.

0

25

50

75

100

25 50 75 100

C
D

F
 [
%

]

Success Rate [%]

0

25

50

75

100

25 50 75 100

C
D

F
 [
%

]

Success Rate [%]

T1, All
T2, All

T1, All
T1, Branchy

T1, Small
T1, Medium

T1, Large
T1, Large and Flat

T1, Large and Branchy

Figure 8: The distribution of the success rate of the workflowtasks. (left) overall. (right) per workflow class.

runs gained a speedup of 9 and higher.
Figure 7 shows the CDF of the workflow normalized schedule length. The NSL values confirm the findings

regarding the speedup (given the high correlation between the number of nodes and the number of edges). The
average NSL is 1.72 for T1 and 1.58 for T2. This shows that the system used for T2 has less overheads in total and
will be able to execute workflows on the Grid more efficient. Inthe per class view, the large and flat workflows show
special behavior as there where runs with short tasks where the overheads account more and longer runs where the
total time could compensate the overheads.

Figure 8 shows the CDF of the workflow success rate. The percentage of workflows with a higher success rate
then 98% are 65%, respectively 75% for trace T1 and T2. The large and branchy workflows for T1 have reached a
success rate of 97% for even 89% of their runs while the large and flat only get more then 95% success rate for 60%
of the traced workflows.
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5 Related Work

There exists a lot work related to workload analysis and modeling for testing, tuning, and resource management design
purposes [6, 13, 15, 14, 9, 8, 10].

Following the seminal work of Feitelson [6], several modelsfor workloads of large computing environments have
emerged [15, 14]; a comparative analysis of the characteristics of workloads from production Grid environments is
first presented in [8]. However, none of these research results is targetting workflows. Iosup et al. [10] present an
investigation of the properties of batches of jobs (a degenerate case of workflows that is popular in today’s Grids) in
Grids.

Synthetic workloads have been employed to test functionality in real and simulated environments; most of work-
flow engines have been tested with such workloads. Workflows from the Standard Task Graphs online archive have
been reportedly used to test the ability of a multi-cluster Grid to execute workflow-based Grid workloads [9].

Closest to our work, Kwok and Ahmad propose four models of workflows used for testing in simulation traditional
workflow scheduling algorihtms [13]. From these models, onemodel consists of pathological cases identified by
scientists for the purpose of stressing their algorithms, two are synthetic models, and only one is extracted from real
workloads. The latter models the flow of two parallel applications. Our analysis presents results that complement this
latter model with a much broader application selection base(the real workload traces), and for which we can show
the environment-related characteristics of executing these workloads in a real heterogeneous environment (including
failures). We also add the workflow task work size (and, notably, its variability) as a parameter to model.

6 Conclusion and Ongoing Work

Realistic data concerning the characteristics of workflow-based Grid workloads is key to the adoption and the evolution
of Grids, but is not readily available to scientists. To address this issue, in this work we present the characteristics of
two long-term traces from the Austrian Grid, a Grid environment in which workflows are common.

We introduce a method for analyzing such traces, then apply the method to the two Austrian Grid traces. The
method identifies two broad classes of workflow characteristics, intrinsic and environment-related. Based on the ob-
served values for the former, we devise six classes of workflows with distinct properties. The analysis of environment-
related characteristics reveals that from the six classes several can be considered classes of ”problem-workflows”,
which exhibit one or all of high variability of the work size of their tasks, high makespan, poor scalability, and higher
than normal failure rate. Overall, we find that the workflow speedup is highly dependent on the system used for execu-
tion, and that the current task success rate requires more fault tolerance mechanisms, especially for large workflows.

We plan to extend our work with the analysis of other traces. In particular, we hope to find traces that include
mostly production workflows submitted by real users. Based on these traces, we will be able to design a model for
workflow-based Grid workloads. We conclude by addressing the whole Grid community with a request for making
available their (workflow-based) Grid workload traces to other researchers.
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