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Abstract

Grid computing promises to enable a reliable and easy-¢oeosnputational infrastructure for e-Science. To
materialize this promise, Grids need to provide full autbomafrom the experiment design to the final result. Often,
this automation relies on the execution of workflows, thatigobs comprising many inter-related computing and data
transfer tasks. While several Grid workflow execution tadteady exist, not much is known about their workload.
This lack of knowledge hampers the development of new waskBoheduling algorithms, and slows the tuning
of existing ones. To address this situation, in this work wespnt an analysis of two workflow-based workload
traces from the Austrian Grid. We introduce a method for yiafl such traces, focused on the intrinsic and on
the environment-related characteristics of the workfloWisen, we analyze the workflows executed in the Austrian
Grid over the last two years. Finally, we identify six catdge of workflows based on their intrinsic workflow
characteristics. We show that the six categories exhibtirditive environment-related characteristics, andtifien
the categories that are difficult to execute for common wovk#chedulers.

1 Introduction

The Grid computing vision aims for an simple useable, depblad and efficient computing architecture and structure.
For this vision to become reality, Grids must fully automite process that starts with experiment design and ends
with analysis results. In turn, the full automation necegsavolves the execution of workflows, that is, of jobs i
task graph structure and comprising computing and datafeatasks [12, 13]. While several Grid workflow execution
engines have recently emerged [17], not much is known alnait lemand, impacting adversely the evolution of
old and new workflow engines. To address this situation, is Work we analyze the workflow-based e-Science
applications executed in the Austrian Grid for the past twarg.

Currently, there are no publicly available traces of wonkfloased Grid workloads, that is, of Grid workloads that
include workflows. This lack of information hampers theitggtand the tuning of existing workflow engines, and the
study and evolution of new workflow scheduling algorithmsthaut proper testing workloads, workflow engines may
fail when facing high load or border cases of workload chisréstics. Without detailed workload knowledge, tuning
lacks focus and leads to under-performing solutions. Wittem understanding of real workloads, current research
studies use synthetically generated workflows, and areddrin scope and applicability. Moreover, evolution lacks
real problems, and may lead to impractical solutions. Ustdexding the characteristics of existing Grid workloads
is key to alleviating all these issues. As a first step towartierstanding Grid workflows, we study two long-term
workload traces from the Austrian Grid. The goal of this wizrkhe analysis of the traces and not comparison of their
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underlaying environment. However, the data alone are fiegerfit: there is a need for new methods to extract and
analyze the workflow characteristics from the workloade¢sad-urthermore, there is a need to identify the class(es) of
workflows for which the execution environment yields distinely poor performance. Our contribution is threefold:

1. We propose a method for analyzing the intrinsic and thé&@nment-related characteristics of workflow-based
Grid workloads;

2. We apply the proposed method on two long-term Grid woudkloaces taken from the Austrian Grid;

3. Based on the results of the analysis, we identify six ekasd workflows with distinct properties, facilitating
the identification of the classes which the execution emvitents can handle the worst to identify improvement
possibilities.

2 Background

In this section we present the background information reangsfor following this work. We first introduce the
workload model used throughout this work. Then, we presét Rnd EE2, the workflow engines that executed the
workflows investigated in this work.

2.1 A Workflow Model

We use for Grid workflows the model introduced by Coffman amdiam [12]. Formally, a workflow is a directed
graphG in which nodes are computational tasks, and the directedsetepresent communication; we denote the
number of nodes and edges Byand E respectively. To begin a task, all its predecessor taskathedmmunication
with that task as the sink must be finished. For simplicity, as@asider only directed acyclic graphs (DAGS), that
is, there does not exist a loop in the directed graph which raguire loop unrolling. We calloot a node without
predecessors; a DAG may have several roots. We further definde’ s level, derived from breadth-first traversal of
the task graph from its roots [2], as the minimal size of a gaim the top to this node (in number of edges); the
level of a root is 0. Finally, we call the maximum level of afléathe graph thegraph level, which we denote by
L — 1; we denote byl thegraph traversal height. Note that parameter sweeps and other batches of jobs [0bma
considered as degenerate workflows with= 1, and that master-worker applications can be seen as workfiotl
L = 3 (including a final task to assemble the worker results).

Figure 1 (left) shows a sample workflow from ASKALON [4], defihby the user in the Abstract Grid Workflow
Language (AGWL) [5]. Figure 1 (right) depicts an instancdto$ example that has one iteration of the outermost
while loop. The number of node¥ is 11, the number of edgdsis 16, and the graph traversal heighis 5.

2.2 The ASKALON Workflow Engine

The ASKALON Grid middleware [4] can execute via its workfloweeution engine workflows specified in AGWL.
While execution, this abstract specification is instaptiathat is, the tasks are annotated with details concethiang
used resources. ASKALON's workflow execution engine fezdua fine grain event system which is implemented
as WSRF service and allows event-forwarding even through biAfirewalls. An overview of this and other Grid
workflow systems can be found in the taxonomy of workflowsystg17].

In the past two years, the ASKALON workflow execution engimeleed in two major steps. The first version,
DEE [3], focused on functionality. DEE’s primary shortcamgs were the internal loop unrolling from the workflow
specification, and the complete scheduling at the starteoéXecution. To improve on scalability and on adaptability
to highly dynamic Grid environments, the second generaiggine EE2 was developed [16]. The EE2 uses internally
a structure that is kept close to the AGWL specification arttebecales for the execution of large workflows. Each
job that is ready for execution will dynamically be send te best available Grid site at this moment.

3 A Method for Workflow-based Grid Workloads Analysis

In this section we introduce a method for analyzing workflomsed Grid workloads. The goal of our analysis is
to establish the main characteristics of the workload shelh building a workflow-based Grid workload model is
greatly facilitated. For our method to be applicable, thalyred traces need to be long-term (i.e. at least a month)
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Figure 1: A sample workflow: Wien2k [1]1€ft) in AGWL. (right) a possible DAG.

and to provide sufficient statistical confidence (i.e., tude at least several hundreds of workflows each). From a
technical point of view, we extract for each workflow chaegistic a comprehensive set of statistical properties (i.e
min, max, average, std. deviation and quantiles). We alsapcde the empirical distribution of the characteristics.
For an overview of these statistical tools we refer to Jaitgssical text [11].

Our method divides the characteristics into two classeskflaov-intrinsic and environment-related. We first
analyze the intrinsic workflow characteristics in Sectioh 8vhich allows us to identify the workflow classes that may
have different environment-related characteristics. nTlee analyze the environment-related characteristicthier
complete workload data and per class in Section 3.2.

3.1 Intrinsic Workflow Characteristics

The intrinsic workflow characteristics refer to the size #mal structure of the workflows, and to their arrival pattern.
We assume that users are not influenced by the system pespértg. size) when defining their workload, and that
the submission of the workflows is independent from the stitiee system (though the submission of the tasks to the
Grid by the workflow engine may not be).

To characterize the workflow size and graph structure, wel@mihe following characteristics (listed in the
chronological order of their analysis within our method):

Number of nodes (N), Number of edges (E), Graph level (L}

Branching Factor (BF) defined as the ratio between the number of edgasd the number of nodég. The branch-
ing factor may have a high impact on the graph execution timehigher the branching factor, the higher the
probability that a task’s execution is delayed due to wgifwor its predecessors.

Work Size defined as task runtime of a task on a base platform. To contipaiteisk work size we face the problem
of data coming from a heterogeneous environment:; the saskeriay take different runtime when executed
by different resources. To compute the work size, we nomadhie task runtime logged in the workload trace
with the ratio between the performance of the resource oriwtiie task is executed and that of a base re-
source. Following the example of CERN’s WLCG, at over 50,80fhputing resources the largest Grid that
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Trace Source Duration Number of WFs Number of Tasks CPUdays.
Tl DEE 09/06-10/07 4,113 122k 152
T2 EE2 05/07-11/07 1,030 46k 41

Table 1: Workflow-based traces analyzed for this work. (WRd&s for workflows.)

publishes size information, we express the resource pedioce in SPECInt2000 values. SPECInt2000 is a
collection of twelve benchmarks representative for indakand scientific applications [7]. The choice of us-
ing the SPECInt2000 values is based on the implicit assampkiat this benchmark is representative for the
applications executed in the studied workload trace.

Variability of the work size inside a workflow (WSV) defined as the ratio between the runtime of the longest and of
the shortest task. The higher the variability, the moreadliffiit is for a task or workflow runtime predictor [18]
to operate, leading to potentially low performance for tregkflow scheduler.

Sequential execution pathdefined for a workflow as the sum of the work sizes of its tasks;

Critical execution path defined for the longest execution path in the workflow graphy delay of a task on this
path will result in a delay of the total executions end. [2].

3.2 Environment-Related Workflow Characteristics

The environment-related workflow characteristics are tiglated (e.g., wait, run, and makespan), schedulereelat
(e.g., makespan vs. critical path), and failure-relategl (@amount of failures).
We employ the following performance metrics:

Makespan defined for a workflow as the time elapsed between the workdlewtering and exiting the system.
Speedup (S)defined as the ratio between a workflow’s makespan and ites¢igliexecution path size.

Normalized Schedule Length (NSL)[13], defined as the ratio between a workflow’s makespan anctitical path
size.

Success Rate (SRYefined for a workflow as the percentage of tasks that finishe@ctly from the workflow tasks.

4 The Results

In this section we describe the long-term trace data c@tefiom the Austrian Grid, and the results obtained when
applying the method described in the previous section tectidata.

4.1 The Workload Traces

In this work we use two traces collected from the Austriard@rier a period of more than one year. The T1 (T2) trace
was collected from the system using the DEE (the EE2) as vawkéhgine (see Section 2.2). Table 1 summarizes
the characteristics of the traces used in this work. Eacheofraces contains information about more than a thousand
workflows, satisfying our analysis method’s input requiegrts.

The collected traces consist mostly of workflow test runbgiloften of production workflows, done by the
developers of the system in order to find bugs and drive dpwedmt. Thus, the results presented in this section should
be regarded as guiding, but not definitive, in establishiregaharacteristics of the Grid workflows.

4.2 The Intrinsic Workflow Characteristics

Figure 2 shows the graph size and structure of the workflows from bioitiesd traces. The average number of tasks
per workflow is 36:70? for T1 and 44-91 for T2. The fact that the average is much higher than thirartije (25

1All CDF graphs in this paper are discrete as they map reaksatioi their integral part before the accumulation.
2We use throughout this work the notatiprt= o to denote a set of values with the averagand the standard deviatien Note that in some
cases the values below or equal to zero are not meaningjul f@: the number of tasks in the workflow.
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Figure 2: The workflow structure for T1 and T2o(f |eft) number of nodestgp right) graph traversal heightbéttom)
average branching factor.

Class N L BF
Small <5 - -
Medium 5-100 - -
Large >100 - -
Branchy - - >1.0
Flat - <2 -

Table 2: Classes of workflows based on their size and stripiwperties.

and 31 for T1 and T2, respectively) indicates a skewed digiin, confirmed by Figure 2(bottom). For both traces,
75% of the workflows have fewer than 40 tasks, and 95% of thd&floovs have fewer than 200 tasks. The average
branching factor is 0.640.67 for T1 and 0.86:0.46 for T2. This indicates that users prefer to submit lbeseupled
tasks, that is, tasks that do not depend on many previoukse3ihus, the properties df and those of2 are very
similar (we have also validated this finding separately)e Ghaph level is 3.7814.04 for T1 and 2.251.0 for T2,
indicating that the new engine is mostly used for graphs litite depth. For T2, slightly over 80% of the workflows
have at most two levels.

Based on the results for the graph size and structure andierpe from [10], we define the workflow classes
summarized in Table 2; mixed classes can also be formed. ffladl, 31edium, and Large classes refer to the workflow
size. The Branchy class contains workflows with more edgas tisual. The Flat class contains workflows with at
most two levels. Throughout the rest of this work we focus lma following classes: Small/Medium/Large(all the
size-related classes), Branchy, Large and Flat, and Laxgy&eanchy.

Figure 3 shows the CDF of the workflow tasks’ Work Size, in nalimed seconds (the runtime on a machine with
a speed of 1000 SPECInt2000). While over 75% of the taskdéakethan 100 seconds, the other 25% can take up to
4 hours (half an hour) for T1 (T2). Around 25% of the large aatltthsks took over 350 seconds while only 2% of the
small tasks takes longer then 80 seconds. The medium ruesanawerall lower task work size compared to the total
(all), while the large a higher size.

Figure 4 shows the CDF of the workflow tasks’ Work Size vatigb{see Section 3.1). More than 75% of the
workflows have a Work Size variability below an order of magde of the task runtime variability. The maximum
variability is over 3000 (150) for T1 (T2). Around 95% of thmall workflows have a variability smaller then 5 while
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Figure 5: The distribution of the makespan of the workfloveft) overall. fight) per workflow class.

approximately 20% of all the large workflows have a varigpilbwer then 5.

4.3 The Environment-Related Workflow Characteristics

Figure 5 shows the CDF of the workflow makespan. Less than 5#e0f 1 workflows take more than one hour;
none of the T2 workflows reach one hour. Over 50% of the worldltake less than 4 minutes. As expected large
workflows have a higher makespan than short ones.

Figure 6 shows the CDF of the workflow speedup. The averagaspp is 2.544.92 for T1 and 8.2411.11 for
T2; the median is 1.15 for T1 and 4.61 for T2. The first quasikie is 0.41 for T1 and 1.70 for T2. This means that
for T1 the benefit of executing workflows is in general redyaedsb for T1, 25% of the workflows are slowed down
by being executed as workflows as opposed to being execudeérsially on a single processor. For T2, the benefits
of Grid workflow execution are much more visible, with quén®1, the median, and the average well above 1. Over
75% of the large and flat workflows were able to achieve a sppénghner then 15. About 50% of the large workflow
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runs gained a speedup of 9 and higher.
Figure 7 shows the CDF of the workflow normalized schedulgtlen The NSL values confirm the findings

regarding the speedup (given the high correlation betwkemtimber of nodes and the number of edges). The
average NSL is 1.72 for T1 and 1.58 for T2. This shows that yiséesn used for T2 has less overheads in total and
will be able to execute workflows on the Grid more efficienttHa per class view, the large and flat workflows show
special behavior as there where runs with short tasks whereverheads account more and longer runs where the
total time could compensate the overheads.

Figure 8 shows the CDF of the workflow success rate. The ptagerof workflows with a higher success rate
then 98% are 65%, respectively 75% for trace T1 and T2. Thyeland branchy workflows for T1 have reached a
success rate of 97% for even 89% of their runs while the langkflat only get more then 95% success rate for 60%

of the traced workflows.
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5 Related Work

There exists a lot work related to workload analysis and riegléor testing, tuning, and resource management design
purposes [6, 13, 15, 14, 9, 8, 10].

Following the seminal work of Feitelson [6], several modelsworkloads of large computing environments have
emerged [15, 14]; a comparative analysis of the charatiterisf workloads from production Grid environments is
first presented in [8]. However, none of these researchtesutargetting workflows. losup et al. [10] present an
investigation of the properties of batches of jobs (a degaaease of workflows that is popular in today’s Grids) in
Grids.

Synthetic workloads have been employed to test functinialireal and simulated environments; most of work-
flow engines have been tested with such workloads. Workflomra the Standard Task Graphs online archive have
been reportedly used to test the ability of a multi-clusted® execute workflow-based Grid workloads [9].

Closest to our work, Kwok and Ahmad propose four models okflows used for testing in simulation traditional
workflow scheduling algorihtms [13]. From these models, or@lel consists of pathological cases identified by
scientists for the purpose of stressing their algorithms, dre synthetic models, and only one is extracted from real
workloads. The latter models the flow of two parallel apglimas. Our analysis presents results that complement this
latter model with a much broader application selection l{tee real workload traces), and for which we can show
the environment-related characteristics of executingdhworkloads in a real heterogeneous environment (inajudin
failures). We also add the workflow task work size (and, nigtdts variability) as a parameter to model.

6 Conclusion and Ongoing Work

Realistic data concerning the characteristics of workfbmsed Grid workloads is key to the adoption and the evolution
of Grids, but is not readily available to scientists. To addrthis issue, in this work we present the characteristics o
two long-term traces from the Austrian Grid, a Grid enviramnin which workflows are common.

We introduce a method for analyzing such traces, then ajyglyntethod to the two Austrian Grid traces. The
method identifies two broad classes of workflow charactesisintrinsic and environment-related. Based on the ob-
served values for the former, we devise six classes of warkfleith distinct properties. The analysis of environment-
related characteristics reveals that from the six classesral can be considered classes of "problem-workflows”,
which exhibit one or all of high variability of the work sizé their tasks, high makespan, poor scalability, and higher
than normal failure rate. Overall, we find that the workflokesgup is highly dependent on the system used for execu-
tion, and that the current task success rate requires maltédéerance mechanisms, especially for large workflows.

We plan to extend our work with the analysis of other tracespdrticular, we hope to find traces that include
mostly production workflows submitted by real users. Basedhese traces, we will be able to design a model for
workflow-based Grid workloads. We conclude by addressiegnthole Grid community with a request for making
available their (workflow-based) Grid workload traces thastresearchers.
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