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Abstract

Nowadays, Web Services (WSs) play an increasingly important role in Web data management solutions, since they
offer a practical solution for accessing and manipulating data sources spanning administrative domains. Nevertheless,
they are notoriously slow and transferring large data volumes across WSs becomes the main bottleneck in such WS-
based applications. This paper deals with the problem of minimizing at runtime, in a self-managing way, the data
transfer cost of a WS encapsulating a data source. To reduce the transfer cost, the data volume is typically divided
into blocks. In this case, response time exhibits a quadratic-like, non-linear behavior with regards to the block size;
as such, minimizing the transfer cost entails finding the optimum block size. This situation is encountered in several
systems, such as WS Management Systems (WSMSs) for DBMS-like data management over wide area service-based
networks, and WSs for accessing and integrating traditional DBMSs. The main challenges in this problem include (i)
the unavailability of an analytical model; (ii) the presence of noise, which incurs local minima; (iii) the volatility of
the environment, which results into a moving optimum operating point; and (iv) the requirements for fast convergence
to the optimal size of the request from the side of the client rather than of the server, and for low overshooting. This
paper presents two novel solutions for detecting the optimum block size during data transmission, thus yielding lower
response times. The solutions are inspired by the broader areas of runtime optimization and switching extremum
control. They incorporate heuristics to avoid local optimal points, and address all the afore-mentioned challenges.
The effectiveness and efficiency of the solutions is verified through empirical evaluation in real cases.

1 Introduction

The proliferation of Web Service-based Grids and the increasingly growing volume of data that is processed by and
shared among such web data management applications gives rise to the need for the development of more robust
techniques for the manipulation of large data volumes in autonomous, unpredictable environments that adopt service-
oriented architectures. Thus far, the emphasis has been on architectures for the execution of SQL-like queries that
span multiple Web Services (e.g., [16, 3, 19]), wide area query optimization (e.g., [22, 14]) and the associated resource
scheduling decisions (e.g., [13]). However, an important factor is the optimization of the data transfer cost for WSs
that encapsulate data sources. Widely adopted standards for WS communication, such as the XML-based SOAP,
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facilitate remote communication but are rather inefficient for transferring large volumes of data, and as such, web
data management solutions based on WSs suffer from high data transmission costs, which lead to poor performance.
To reduce this type of cost, a typical approach is to split large data volume into several blocks. The block-based data
transmission cost is largely dependent both on the size of the request (i.e., the size of the data block transferred between
services) [22, 4], and on the network bandwidth. More specifically, the performance of a remote server serving a series
of calls with a fixed total size, in terms of the task response time, is characterized by a noisy (due to the volatile network
conditions), concave graph with regards to the size of the data chunks or blocks. Such a graph has a different optimal
point for different queries and/or different connections, or even different stages of the same query. The problem that
this paper deals with is to detect at runtime this optimal point in a self-optimizing way.

Consider for example the case in which a database is globally exposed as a WS through OGSA-DAI wrappers [5].
Clients can retrieve data from this database by submitting requests containing SQL queries to the associated WS. When
the result set is relatively large (larger than 1-3MB in the current release of OGSA-DAI), then it must be returned in
chunks that can be specified by the recipient to avoid out-of-memory errors and speed up transmission. As reported
also in [4], the response time first decreases when the block size is increased and after a point it starts increasing. This
point is different for each query-connection combination. Similar behavior for other data management WSs is reported
also in [22]. Note that concave graphs can describe other aspects of the behavior of Web Services and Web Servers, in
general. An example is the response time of an Apache Web Server with regards to the number of maximum clients
allowed to be connected simultaneously to it [17].

In this paper we choose OGSA-DAI as our case study. The objective is to minimize at runtime the total response
time of a query by (continuously) tuning the size of the data blocks that are requested by the client from an OGSA-
DAI WS. We follow a control theoretical approach and so, the self-optimizing entity, which resides at the client,
is referred to as the controller and the WS as the controlled entity. A main challenge in this case study is that the
entity to be configured is exposed as an unknown black box to the controller. A consequence of this fact is that any
solutions developed must operate well in the absence of a parameterized model that describes the behavior of the
service. Another consequence is that any scope of using heuristics based on more detailed monitoring and internal
state information of the server (e.g., as in [17]) is eliminated. In other words, the only information about the controlled
entity is restricted to the measured output, which is the response time of the request of the caller. However, the main
benefit is that the measured output is the metric that mostly interests the user, since it includes the transmission cost
over the network, and, as such, describes the performance from the user’s point of view precisely. This comes at the
expense of additional noise and jitter in the measured output, which are inherent in measurements of communication
costs across unstable, volatile connections. The noise results in local peaks and non-monotonic behavior on both sides
of the optimal point (i.e., the block size for which the time for the complete data transmission is minimized), rendering
naive hill climbing techniques non-appealing. Finally, the convergence of any algorithm must be fast; otherwise
serious performance degradation is not avoided.

The contribution of this paper is to present solutions to the afore-mentioned problem that meet the requirements
mentioned above. More specifically, the main contribution of this work is two-fold.

e Firstly, to present fast and robust optimization algorithms that belong to the area of runtime optimization and
switching extremum control and that are capable of converging to the optimal block size quickly despite the
presence of local optimum regions, noise, and bad choices for the starting point.

e Secondly, to apply these algorithms to the OGSA-DALI case, and conduct experiments to evaluate them. The
evaluation results prove that the algorithms are robust, effective and are characterized by high convergence
speed. More specifically, there are significant benefits in the response time in the generic case, where the
optimal region of block size is not a priori known; moreover, the algorithms can yield improved performance
even in the more limited scenario where this region can be approximated.

The remainder of this paper is structured as follows. The next section presents the OGSA- DAI approach and some
measurements that motivated the research described hereby. The solution to the optimization problem is presented in
Section 3. Section 4 deals with the evaluation. Section 5 discusses related work, and Section 6 concludes the paper.

2 The OGSA-DAI approach

OGSA-DALI services aim at exposing different data resources, such as relational and XML DBMSs, and raw files, in
the form of WSs, which are called Data Services (DSs) [5]. A single Data Service can provide access to multiple data
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Figure 1: Response times for a local query for different block sizes.
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Figure 2: Response times for a remote query for different block sizes.

resources, and this interaction is enabled through the so-called Data Service Resources (DSRs), which implement the
core OGSA-DALI functionality. A client or another WS can direct “perform” documents at an OGSA-DAI DS. The
protocol used is SOAP over HTTP and the perform document is in XML. Subsequently, a DSR accepts, parses and
validates this document, executes the data-related activities specified within it, and constructs the response documents.

The activities described in the perform document define also the data delivery mechanism. Several modes are
supported; here we investigate only the pull one. In this mode, the client sends requests to the service, which, as a
response, returns all the results either in one big chunk, or in smaller blocks. In OGS A-DALI the block size is in tuples.
The advantage of the former case is that the client sends just a single request, whereas, in the latter case, the client
sends a series of requests until the complete result set is retrieved. Nevertheless, the advantage of the latter case is
that firstly, it can handle large volumes of data that cannot fit entirely into main memory, and secondly, it allows for
pipelined post-processing at the client’s side. As such, retrieving the result set in a block-based pull mode is more
widely applicable.

Figure 1 illustrates the response times for a query returning to a local client 100000 tuples of 100 bytes each, when
the data block sizes are fixed for the whole duration of the query. The values shown are the averages over 5 runs on a
machine with 512MB memory and 2.4GHz CPU speed. They are measured at the client side and they correspond to
the cost of sending as many requests as required to retrieve the complete result set and getting back the response from
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Figure 3: Response times for a remote query for different block sizes (unstable connection).

including 1st block without Ist block
block size average stdev tuple cost average stdev tuple cost
4001 1330 455 0.33 1242 102 0.31
4500 1491 428 0.33 1404 167 0.31
5001 1314 508 0.26 1203 153 0.24
6000 1560 638 0.26 1400 146 0.23
7000 2135 706 0.3 1944 146 0.28
8000 2426 706 0.3 2220 165 0.28

Table 1: Summary of response times for a local query for different block sizes.

the server. The WSRF' 2.2 flavor of OGSA-DALI is used. In this setting the optimum block size is around 6000 tuples.
For this size, the response times are approximately 4 times lower than when the block sizes are a few hundred tuples.
The sharp increase in response time with block sizes larger than 10K tuples is due to memory shortage.

Figure 2 shows the response times for the same query in a different setting. The server now is on a machine
with 3.2GHz CPU speed and 1GB memory, and the client is remote (the server is in the UK, whereas the client is
in Cyprus). We can observe that the optimum point has moved to around 10K tuples and the optimum size of the
previous case now yields approximately 20% worse performance. In another setting, where the client and the server
are connected through an unstable wireless connection, the optimum point is modified to 8000 tuples approximately,
as shown in Figure 3.

All these figures reveal a common pattern: the performance first decreases (in a non monotonic fashion) with
increased block sizes, and after a point it starts degrading. It cannot be easily verified which exactly factors are
responsible for these; in network applications of this kind the responsibility is diffused. However sending fewer
blocks means that the total amount of requests transmitted is reduced and thus can improve performance. On the
other hand, larger chunks of data require more resources, such as internal buffers, at the server side, which may start
becoming stretched resulting into lower response times. This is why the concave effect exists also in local settings, as
shown in Figure 1.

From the above figures, it has become obvious that in different settings in terms of different server-client pairs, the
optimum data block size changes. In addition, the noise is high and as a result, on both sides of the optimal point there
may exist local optimal points, which must be overcome by the self-optimizing mechanism. This is more evident in
Figure 4, which shows 3 out of the 5 runs, the aggregate of which is in Figure 3. Profiling of each pair of nodes cannot
be sufficient. This happens for two reasons. Firstly, the resources are non-dedicated in general, which means that the
service response time and network bandwidth are subject to frequent, unpredictable changes. Moreover, the optimal
point depends also on the length of the tuples in the result set, which is query-dependent. For example, in Figure 5

Uhttp://www.oasis-open.org/committees/tc_home.php? wg_abbrev=wsrf
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Figure 4: Response times of individual runs of a remote query for different block sizes (unstable connection).
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Figure 5: Response times for a remote query for different block sizes (unstable connection, double tuple size).

including 1st block without Ist block
block size average stdev tuple cost average stdev tuple cost
4001 5198 1014 1.3 5146 996 1.29
4500 5386 856 1.2 5295 706 1.18
5001 6334 1750 1.27 6287 1782 1.26
6000 7337 1327 1.22 7260 1312 1.21
7000 8154 1724 1.16 8026 1696 1.15
8000 9636 1673 1.2 9459 1570 1.18

Table 2: Summary of response times for a remote query for different block sizes.

the response times are presented for the same setting as in Figure 3 with the only difference that the tuple length is
doubled. We can observe that the optimum block size has been modified in this case as well. In Figure 5, two plots are
depicted, one that takes into account the XML processing of the SOAP messages that are used to convey the results,
and one that presents the aggregate response time, as in all figures up to this point. It is shown that the shift of the
optimum size, when compared against Figure 3, is not due to a change in the XML processing cost, i.e., if another,
non XML-based protocol is employed instead of SOAP, the same phenomenon will appear.

CoreGRID TR-0113 5



The impact of the volatility of network connections and of noise are summarized is Tables 1 and 2, which corre-
spond to Figures 1 and 5, respectively. In the tables, it can be seen that the standard deviation in the measurements is
high enough to mislead a simple optimizer, performing hill-climbing for instance, as to whether increasing the block
size is profitable or not. Discarding the cost of the first block which includes the submission of the query on the
service side, has little effect in remote cases. As such, applying simple hill-climbing or rule-based techniques (e.g.
fuzzy control) is unsuitable in this case. Also, when 100K tuples are transferred and the optimal size is around 6-8K
tuples, it means that the query will be finished in less than 20 cycles. As a result, a further requirement is for fast
convergence. This leaves little scope for system identification and sampling that would allow for parameterization of
an analytical model, based on which the optimum point can be estimated. Overshooting must also be low; otherwise
either out-of-memory errors might occur, or the performance degradation due to a few cycles with a block size near
the point where the system runs out of memory cannot be outweighed by future optimized decisions due to the small
number of overall cycles.

3 Online Adjustment

The high level architecture assumed is that the controller at the client analyzes the response time of the WS for previous
block sizes, and based on this information, continuously (i.e., at each step) adjusts the size for the next data block to
be requested. If y is the performance metric, such as response time or equivalently, the per tuple cost in time units,
and z the size of the data block, it is usually assumed that, at least in the neighborhood of the optimal point, there is a
quadratic function f(z) = a(z — z,)? + b, where a, b are unknown constants, for which y = f(z) + e. e represents
the noise, and we further assume that e is responsible for the local peaks on both sides of the optimal block size. The
optimal point is the value of 2 for which the first partial derivative of f(z) is 0 (i.e., 7 f(z) = 0), which is obviously
To.

In this paper, two main approaches are investigated. The first is a typical numerical optimization method, while the
second comes from the field of extremum control. The former is inspired by the Newton’s method [20], which defines
that the value of x at the kth step, xj, is given by the following formula

v f(@k-1)

2 (1) W

T = Tp—1 —

The first partial derivative allows the next block size to move towards the optimum point, whereas the second
partial derivative is for faster convergence. However, the main drawback is that the Newton’s method is known to be
very sensitive to noise, and in the case examined, the noise is non-negligible; moreover, the behavior of the system
may have some quadratic characteristics, but this does not mean that a quadratic function, the parameters of which are
unknown anyway, can describe it accurately. The unavailability of a model leads to approximate estimate of the partial
derivatives using backward difference operators Au = uj — ug_1, i.e 7 f(k) = 2—;{ = %

To mitigate the impact of the noise in the graphs, the measured output and the control input are firstly averaged
over a sequence of n measurements. This may reduce the speed of response to changes. Hence, a proper choice of
the averaging horizon must be made to trade off speed of response with noise removal. To facilitate the controller to
be capable of continuously probing the block size space, since the optimum point may move during query execution,
a dither signal d(k) = dy - w(k) is added, where d; is a constant factor and w a pseudo-random variable that follows
a Gaussian distribution with mean 0 and standard deviation 1. As such, the value of the block size at each step is
estimated as follows:

Ay 1 k—n+1
T = Th-1 — ﬁ +d(k), {ZTk Uk}t = -~ Z {zi, vi} 2
k=1 i=k

The second approach investigated is inspired by extremum control [7], which can yield results and track a varying
optimum operating point even in the absence of a detailed analytic model. The role of an extremum controller is to
manipulate the input z to the performance function f(x), as a function of this output. Extremum control is based upon
numerical optimization but goes beyond that since it can be blended with well known control approaches, including
variable setpoint (optimum tracking) controllers, feedforward controllers, perturbation analysis, self tuning and adap-
tive techniques, so that noise, model uncertainties and time variations can be dealt with. Filtering and averaging are
also typically included in the aforementioned techniques. There is a rich literature and many different methodologies
and applications [6, 23].

CoreGRID TR-0113 6



ID | #tuples retrieved | avg tuple length
Q1 150000 27 bytes
Q2 150000 65 bytes
Q3 200000 57 bytes
Q4 450000 4 bytes
Q5 1000000 2 bytes

Table 3: The characteristics of the example queries.

In this paper, due to the difficulties mentioned in the previous sections, we decided to experiment initially with a
simple and straightforward scheme, called switching extremum control.
Two flavors are examined; both can be described by

T = Tk—1 — g - sign(Ay,_1ATp_1) + d(k) 3)

The formula above can detect the side of the optimum point where the current block size resides on. The sign ()
function returns 1 if x is positive, and —1 otherwise. The rationale of the formula is that the next block size must
be greater than the previous one, if, in the last step, an increase has led to performance improvement, or a decrease
has led to performance degradation. Otherwise, the block size must become smaller. In the first flavor, g = by is
a constant (positive) tuning parameter. Without applying a dither signal, the step size is always the same, and since
[|Az|| = b1, by defines the rate at which z is modified. In the second flavor

Ay,
Yr—1

g =ba|| ATp_ql[, b2 >0 4

where by is constant. In this case, the step (gain) is adaptive and is proportional to the product of the performance
change and the change in the block size. In both approaches, maximum and minimum limits can be imposed to avoid
overshooting with detrimental effects.

4 Prototype Implementation and Evaluation

To test the actual performance of the techniques described, a thin client is built that can submit SQL queries to an
OGSA-DAI Data Service and request results to be delivered in blocks, the size each of which is determined by a
controller encapsulated in the client. The data comes from the TPC-H database (scale 1) stored in a MySQL DBMS.
Five queries are used throughout as shown in Table 3. Note that the actual tuple length communicated across the
network is significantly increased by the XML tags, as reported in [10]. Since we are interested in the data transmission
cost and not in the cost to evaluate the queries within the WS, all queries are simple scan queries without joins, so that
the computational load in the server is minimal and, as a result the time to produce a block is negligible and does not
affect the measurements.

The experimental setup is as follows, unless explicitly mentioned. The server is in Manchester, UK and there
is a single client in Greece. The server’s CPU speed is 3.2GHz and the memory 1GB. Each query configuration
ran 10 times, and the different configurations were executed in a round robin fashion, i.e., there is no concurrency
and the WS was not serving third party requests during the period of experiments. The complete set of experiments
presented here lasted for 10 days approximately around the clock, and as such, it reflects the condition of the network
during significantly different workloads. Consequently, the measurements presented are characterized by a relatively
high standard deviation that is not due to a bad approach to experimentation but to the volatility of the environment;
running more experiments using non-dedicated resources at arbitrary time periods, as in these experiments, would not
tackle this phenomenon. To smooth the standard deviation the lowest and the highest value of each set of the 10 runs
is removed, and the average of the rest is presented.

The response times of the 5 example queries are presented in Figure 6. The fixed block sizes used to produce this
profiling figure are 1K, 5K, 6K, 7K, 8K, 9K and 10K tuples. At first sight, when the initial decision on the block size
is clearly suboptimal, i.e. around 1000 tuples, an adaptive method can yield significant performance benefits?; to the

2The main adopter of OGSA-DAI, OGSA-DQP [3] suffers from such a suboptimal decision in its current release.
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Figure 6: Response times for queries Q1-Q5 for fixed block sizes.

name policy | b1 | by | df
NTN-noD NTN | 400 | - 0
NTN-D NTN | 400 | - | 100
SEC-const-D | SEC | 400 | - | 100

SEC-5-noD SEC | 400 | 5 0
SEC-10-noD | SEC | 400 | 10 | O
SEC-15-noD | SEC | 400 | 15| O
SEC-20-noD | SEC | 400 | 20 | O
SEC-25-noD | SEC | 400 | 25| O
SEC-5-D SEC | 400 | 5 | 100
SEC-10-D SEC | 400 | 10 | 100
SEC-15-D SEC | 400 | 15 | 100
SEC-20-D SEC | 400 | 20 | 100
SEC-25-D SEC | 400 | 25 | 100

Table 4: The adaptive policies evaluated.

name Q1 Q2 Q3 Q4 Q5 avg

NTN-noD 1 1.1029 1.0269 1.0429 1.0912 1.0528
NTN-D 1.0047 1.0567 1.0053 1.0654 1.1127 1.0489
SEC-const-D 1.0215 1.1289 1.2465 1.0463 1.1785 1.1243
SEC-5-noD 1.0147 1.0613 1.036 1.0142 1.1549 1.0562
SEC-10-noD 1.03 1.0452 1.03 1.0322 1.1852 1.0645
SEC-15-noD 1.0366 1 1.0405 1.064 1.129 1.05

SEC-20-noD 1.0059 1.0724 1.0015 1.0182 1.0645 1.0325
SEC-25-noD 1.012 1.0486 1 1.0395 1 1.02

SEC-5-D 1.0249 1.1047 1.1277 1.0766 1.2189 1.1106
SEC-10-D 1.0214 1.0147 1.0893 1.0674 1.1614 1.0708
SEC-15-D 1.0102 1.0239 1.0987 1.0405 1.1528 1.0652
SEC-20-D 1.0103 1.0616 1.1413 1.1018 1.1288 1.0888
SEC-25-D 1.0042 1.0659 1.1748 1 1.1177 1.0725

Table 5: Comparison of adaptive policies.

contrary it seems that there is little scope for optimization otherwise, since the near-optimum region is relatively wide.
However, as will be discussed next, even in these cases where the initial decision is not clearly suboptimal adaptive
policies can yield more robust and consistent performance improvements that, in some cases, are around 10%.

CoreGRID TR-0113 8



block size Q1 Q2 Q3 Q4 Q5 avg
1000 1.25 1.281 1.4 1.45 1.43 1.361
5000 1.0718 1.0052 1.0752 1.0729 1.075 1.06
6000 1.0422 1.0286 1.0626 1.0198 1.024 1.0354
7000 1 1.018 1.0205 1.0104 1.0235 1.0145
8000 1.0013 1 1.0077 1.0698 1.0143 1.0186
9000 1.0134 1.005 1 1 1.0302 1.0097
10000 1.0241 1.0151 1.0084 1.0084 1 1.0112
dyna-mic 0.989 0.9945 0.9436 0.9764 0.8922 0.9591

Table 6: Comparison of dynamic adjustment of block size against fixed size policies.

4.1 Comparison of Adaptive Techniques

Table 4 presents the adaptive policies evaluated. In the Newton (NTN) and the switching extremum control (SEC) with
adaptive gain, b; is used in the first runs when no adequate information has been gathered to estimate the derivative.
The starting point in all configurations is 5000 tuples and the averaging window n is set to 3. Minimum and maximum
value constraints are imposed, set to 1000 and 10000, respectively.

The comparison of the techniques is shown in Table 5, which presents the normalized response times for each
of the adaptivity configurations of Table 4. The lowest response time is given the value 1 in the table. As such,
the cell values correspond to the performance degradation when compared against the most effective of the policies
investigated. Several useful observations can be drawn from this table.

e Firstly, taking into account the small differences between the response times for different block sizes shown in
Figure 6, the differences between the performance of the different adaptivity policies are not negligible.

e Secondly, there is no policy that outperforms the others consistently.

e Thirdly, as expected, the Newton-based techniques cannot perform as well as the best switching extremum
control policies; the former are known to be more sensitive to noise.

e An additional observation is that, somewhat counter-intuitively, the effects of dithering signal and adaptive gain
based on the performance change seem to annul each other, and consequently, the best approaches to SEC with
adaptive gain seem to be those that have zero dithering factor. On average, SEC-25-noD yields 1.02 times
worse response times than the best policy (which is unknown from before), whereas the best SEC policy with
both adaptive gain and dither signal yields 1.0652 times worse performance. An explanation could be that the
moving optimum point and the volatility of the environment are adequate for continuously searching the block
size space and thus to overcome local optimum points, whereas dithering results to increased instability. Also, in
most cases, the dither signal does not change the mean value of block size but causes a fluctuation on both sides
of it with an amplitude which depends on dy. When the dynamic adjustment operates near the starting point
area, negative dither signals cause more significant performance degradation than the performance improvement
in the case of positive signals because of the shape of the response time graphs. As such, applying a dither signal
seems more appropriate for cases in which the slope on both sides of the global and local optimum points is
steeper.

e Finally, the first flavor of the SEC policy with constant step, SEC-constant-D, is not efficient. Perhaps, the
performance would improve with different values for b; but then we would result in moving the problem from
fine-tuning the block size to fine tuning the adaptivity parameters.

4.2 Performance Improvements

So far we have discussed how the adaptivity techniques compare to each other. In the following paragraphs the
comparison with the fixed block size cases will be discussed, with a summary provided by Table 6. In this table, the
values are normalized with the optimum point of Figure 6 set to 1. The last row depicts the relative performance of the
most effective policy for each query, as shown in Table 5. The overhead is included in this time and, from the table, it
can be inferred that it is negligible. We can observe that:

CoreGRID TR-0113 9
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Figure 7: The block sizes at different adjustment cycles (a) for Q4, Q5 when SEC is employed with bs = 25 and (b)
for Q1, Q5 when SEC-const-D is employed.

e For this experiment set, the improvement may exceed 40% (if the fixed sized blocks were 1000 tuples). Similar
or much larger improvements may be noticed in other settings (e.g., Section 4.4), in the generic case where the
near-optimum area of block sizes is unknown from before. In the following, the more limited case where this
area can be approximated is discussed.

e Dynamically adjusting the block size outperforms fixed size configurations by more than 4% on average, even
if these are known, e.g., through profiling, and set to their optimum before execution. Also dynamic techniques
can track the optimal point; in fixed configurations, the optimum from a finite set that has been profiled is
chosen; however it might be the case that the global optimal is not in this set.

e On average, the best size for fixed size configuration in our experiments is 9000 tuples. This yields more than
5% performance degradation when compared to dynamic adjustment, which is translated in several minutes in
real time units (given that all queries and especially Q5 are rather expensive and long running as shown in Figure
6).

e The starting point of the adaptivity policies is 5000 tuples. If this size was used for fixed size configurations
instead of 9000, the performance improvement would be more than 10%.

¢ In the table, the performance of the best adaptivity policy is taken into account, for each query. If instead, SEC-
25-noD is used for all queries, the average performance improvement is around 3%, 8% and 38% compared to
fixed blocks of 9000, 5000 and 1000 tuples, respectively, which is still significant. NTN-D yields 0.5%, 5.5%
and 36% lower response times, respectively. NTN-noD, which requires not a single configuration parameter,
behaves the same as a 9000 tuples fixed block size.

4.3 Speed of Convergence and Stability

The convergence speed of the second flavor of the switching extremum control (SEC) techniques is fast, and this is
depicted in Figure 7(a). On average, the adjustment converges to its final region at 5 adaptivity cycles, i.e., five block
transmissions. When there is no dither signal, the block size remains stable thereafter. The drawback is that if either
Ayg_1 or Axyp_1 remains unchanged for two consecutive averaging windows, then a chain effect takes place where
all future block sizes cannot be modified. This is not desirable when the optimum point changes significantly during
query runtime. It is avoided with dithering, where there is a continuous search of the space, which sometimes has
negative effects as discussed earlier, but in some cases enables higher accuracy as in Q4 (see Figure 7(a)). The fast
convergence property does not hold for the first flavor of SEC, as shown in Figure 7(b). SEC-const-D seem to require
more cycles to converge than the complete length of the query execution.
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query dynamic fixed at 1000 tuples
avg stdev avg stdev
Ql 1.152 | 3.77% | 2.581 0.42%
Q2 1.191 | 3.58% | 2.557 0.18%
Q3 1.192 | 3.19% | 2.404 1.08%
Q4 1.154 | 6.52% | 2.178 0.41%
Q5 1.02 | 5.15% | 2.06 0.77%

Table 7: Comparison of the performance of dynamic adjustment of block size when the initial block size is clearly
suboptimal.

SEC-15-D
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N 6000
» ] ——Q1
] a5
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2000 -
0
0 20 40 60 80 100 120
cycles

Figure 8: The block sizes at different adjustment cycles when SEC-15-D is employed and the starting point is 1000
tuples.

4.4 Dynamic adjustment with clearly
suboptimal starting point

In the experiments presented above, the initial starting point for the adaptive techniques has been relatively close
to the optimum. To further prove the robustness and efficiency of the adaptivity approaches, the five queries are
executed again (in a LAN setting this time) and the initial starting point is set to 1000 tuples. In this setting, the
performance degradation of such a suboptimal decision is more severe than in a WAN environment (more than 100%).
A single configuration of the SEC techniques is picked, namely SEC-15-D, which is outperformed by SEC approaches
with adaptive gain and no dithering but, according to the previous experiments, is the most effective from the SEC
approaches that apply dithering. Table 7 summarizes the results in normalized time units. 1 corresponds to the lower
response time after performing profiling with several fixed sized configurations. When there is no adjustment, the
response times are more than 200% the optimum, whereas SEC-15-D yields on average only 14% worse response
times. The intra-query behavior for Q1 and Q5 is shown in Figure 8; the rest of the queries exhibit similar behavior.
An observation is that the adaptivity techniques very quickly move out of the clearly suboptimal region of 5000 tuples
or less. Overshooting is avoided due to the maximum hard constraint imposed.

5 Related Work

There is a recent booming in applying control theory in computing systems, software engineering and software ser-
vices [15], [2]. This is due to the trend of going beyond ad hoc and heuristic techniques towards an autonomic
computing paradigm [9]. Exploitation of the rich arsenal of techniques, methods, ideas and foundations of control the-
ory, developed for many decades since the second world war, has already led to improved designs in many areas and
problems [1, 12, 18]. Furthermore, to meet QoS, optimization approaches have been also developed in many works,
where dynamic tuning of several configuration parameters that are related to the performance of computing systems is
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suggested. More specifically, online minimization of the response time of an Apache web server by dynamic tuning of
the number of maximum clients allowed to be connected simultaneously is described in [17], where hill climbing and
fuzzy control techniques are employed. For a database server, online adjustment of multiple configuration parameters
using online random and direct search techniques is proposed in [8] to guarantee good performance. For application
servers, optimal configurations have also been sought in [21] using off-line experimentation and statistical analysis.
From the control theory point of view, extremum control has been employed from the early stages of control theory de-
velopment. Although applied in many engineering systems, to the authors’ knowledge this work is the first application
to the Web Service Management Systems (WSMS) problems described in our context. For non-engineering problems,
in a totally different context, an extremum control approach has only recently appeared in [11] for the problem of error
correction in packet-switched networks.

6 Conclusions

This paper presents algorithms for the online adjustment of block size for enhanced transmission of large data volumes
in Web Service Grids following a control theoretical approach. These algorithms yield lower response times for
retrieving large data volumes from WSs, which is the main bottleneck in service-oriented web data management
applications. More specifically, they can produce significant benefits in the response time in the generic case, where
the optimal region of block size is not a priori known; in this case the response time can be reduced to the half or
less. Moreover, the algorithms can yield improved performance even in the more limited scenario where this region
can be approximated. The results of this work render the process of calling services self-optimizing, and detailed
WS profiling and fine tuning obsolete. The algorithms analyze the behavior of past values for the block size in order
to determine the future configurations. Detailed experiments demonstrate the efficiency and the effectiveness of the
presented solutions and prove that, apart from reducing significantly the response time, they are characterized by all
four main desired properties for self-managing systems, i.e., stability, accuracy, speed of convergence, and overshoot
avoidance [9]. The techniques presented are applicable to any similar optimization problem where the entity to be
configured remotely exhibits a quadratic behavior; OGSA-DALI services are presented merely as a case study.

Apparently, other techniques inspired from different fields of numerical optimization and extremum control may
be applicable. At first sight, the aforementioned problematic issues that are present in our case study leave little
scope for the use of model-based techniques, especially for short-lived transfer tasks and highly variable conditions.
However, under some further assumptions and restrictions, these methods might be able to provide improved results.
Hybrid schemes, combining ideas from different methods, especially suited to our needs, will also be investigated. It
is a subject of future work to experiment with such new schemes in more settings, including concurrent WS requests.
Initial results when there are concurrent requests to a WS show that the near optimal region is narrower and the
performance benefits even more significant.
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