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Abstract

Peer-to-peer (P2P) computing is recognized as one of most prominent paradigms to achieve scalability in key
components of Grid systems. One of these components is resource discovery, whose duty is to provide system-wide
up-to-date information about resources, a task inherently limited in scalability. Unlike typical P2P systems, Grid
systems manage not only static resources, but also resources whose characteristics change dynamically over time.
To cope with this scenario, recent P2P-based Grid resource discovery systems employ a combination of Distributed
Hash Tables (DHTs) to manage static resources, and unstructured (i.e., broadcast-like) search techniques for dynamic
resources. In this paper we elaborate on this approach by designing and implementing a Grid resource discovery
system that employs a dynamic querying algorithm over a structured DHT-based overlay. The system has been fully
implemented and deployed on the Grid’5000 platform for testing and evaluation. The experimental performance re-
sults presented here demonstrate the efficiency of the implemented system, both in terms of number of messages and
time needed to complete the search.

Keywords: Grid, resource discovery, peer-to-peer, dynamic querying, distributed hash tables.
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1 Introduction
To achieve their envisioned global-scale deployment, Grid systems need to be scalable. Peer-to-peer (P2P) techniques
are widely viewed as one of the prominent ways to reach the desired scalability. Resource discovery is one of the most
important functionalities of a Grid system and, at the same time, one of the most difficult to scale. Indeed, the duty of
a resource discovery system (such as the Globus MDS [1]) is to provide system-wide up-to-date information, a task
which has inherently limited scalability. To add to the challenge, Grid resource discovery systems need to manage
not only static resources, but also resources whose characteristics change dynamically over time, making the design
critical.

Recent work [2] proposed a framework that combines the use of Distributed Hash Tables (DHTs) to search static
Grid resources, and an unstructured P2P search algorithm to locate dynamic resources. Differently from standard
unstructured protocols, such framework searches for dynamic resources by using a “dynamic querying” algorithm,
which exploits a DHT structure to distribute queries across nodes without generating redundant messages.

In this paper we elaborate on such an approach by designing and implementing a hybrid P2P-based Grid resource
discovery system which supports both static and dynamic information retrieval, and push and pull models. Like recent
unstructured systems, our system is based on a two-tier approach, with peers divided in two categories (Superpeers
and Peers) based on the level of service they can provide. Following this approach, each Superpeer acts as a server
for a number of regular Peers, while Superpeers connect to each other in a P2P fashion at a higher level [3]. Unlike
unstructured systems, we organize Superpeers using a DHT-based system, namely Chord [4] and its implementation
Open Chord [5].

The search for static information is performed in a structured-like fashion, while dynamic information search is
performed in an efficient unstructured-like fashion tailored to the DHT structure. Thus, the proposed system is hybrid
in more than one aspect. The two-tier approach couples the completely decentralized P2P paradigm with a limited
degree of centrality to reduce the effort of providing a global view of the system resources. In addition, our system
couples the structured topology with a brodcast-like mechanism reminiscent of unstructured systems to locate dynamic
information. The support for both a push and a pull approach to resource discovery allows for a trade-off between
message cost for resource discovery and staleness of provided information.

The system has been fully implemented and deployed on the Grid’5000 platform [6] for testing and evaluation.
The experimental performance results presented in this paper demonstrate the efficiency of the implemented system,
both in terms of number of messages and time needed to complete the search.

The remainder of the paper is organized as follows. Section 2 discusses related work on P2P-based resource
discovery. Section 3 presents the system design, and describes the algorithm of dynamic querying implemented by the
system. Section 4 discusses the implementation of the system and its evaluation on the Grid’5000 platform. Finally,
Section 5 conclude the paper.

2 Related work
P2P-based resource discovery systems allow nodes participating in the system to share both the storage load and the
query load. In addition, they provide a robust communication overlay. P2P-based Grid resource discovery mechanisms
that appear in the literature can be divided into two categories: structured and unstructured [7]. Most proposed systems
depend on a structured P2P underlying layer. A structured system however assumes that all pieces of information are
stored in an orderly fashion according to their values in a DHT. This is the reason structured systems support efficient
resource discovery. However, apart from static resources, Grids include dynamic resources whose values change over
time. Whenever the value of a resource attribute stored in a structured system changes, it needs to be republished. If
this occurs too often, the cost of republishing becomes prohibitively high.

Flooding is supported by those P2P-based Grid resource discovery systems that follow the unstructured approach.
Flooding, however, can generate a large volume of traffic if not carefully deployed, due to the duplicate messages
generated during this process. Several P2P-based Grid resource discovery algorithms appear in the literature, trying
to alleviate the excessive volume of traffic produced during flooding [8]. One of the first alternatives proposed was
random walks. Each node forwards each query it receives to a single neighboring node chosen at random, a method
that generates very little traffic but suffers from reduced network coverage and long response time. As an alternative,
multiple random walks have been proposed, where the querying node starts simultaneously k parallel random walkers.
Although compared to a single random walk this method has better behavior, it still suffers from low network coverage
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and long response time compared to flooding.
Hybrid methods that combine flooding with random walks have been proposed in [9]. Schemes like Directed

Breadth First Search (DBFS) forward queries only to those peers that have provided results to past requests, under the
assumption that they will continue to do so. Interest-based schemes aim to cluster together peers with similar content,
under the assumption that those peers are better suited to serve each other needs. In another family of algorithms, query
messages are forwarded selectively to part of a node neighbors based on predefined criteria or statistical information.
For example, each node selects the first k highest capacity nodes or the k connections with the smallest latency to
forward new queries [11]. A somewhat different approach named forwarding indices builds a structure that resembles
a routing table at each node [10]. This structure stores the number of responses returned through each neighbor on
each one of a preselected list of topics. Other techniques include query caching, or the incorporation of semantic
information in the network [13, 12].

An approach that has been used to make resource location in unstructured P2P systems more efficient is the
partitioning of the overlay network into subnetworks using content characterization methods. A different subnetwork
is formed per content category. Each subnetwork connects all peers that possess files belonging to the corresponding
category. A system that exploits this approach is the Semantic Overlay Networks (SONs) [13]. SONs use a semantic
categorization of music files based on the music genre they belong to. The main drawback of this method is the
semantic categorization of the content. An approach that overcomes this semantic categorization method has been
proposed in [12].

A controlled flooding mechanism, known as “dynamic querying”, has been proposed to reduce the number of
messages generated by unstructured P2P systems [14]. In this paper a dynamic querying-like approach is implemented
and evaluated. The method exploits the benefits of dynamic querying over the overlay network of a DHT-based P2P
system to eliminate duplicate messages, thus reducing significantly the total number of messages generated by every
search. The dynamic querying algorithm implemented in our framework is described in the next section.

3 System design
The proposed system is based on a two-tier architecture in which nodes belong either to the category of Peers or
Superpeers, based on the level of service they can offer. Most participants act as normal Peers, while the high-
bandwidth participants act as Superpeers. Superpeers participate normally in the P2P overlay and also act on behalf
of Peers, which participate in the system indirectly by connecting to Superpeers. There are several reasons for this
“stretching” of the P2P system definition, which dictates that all participants have equal roles and responsibilities.
The first one is to improve the scalability of the system by exploiting the heterogeneity of participating nodes. This
essentially means that more work can be assigned to those participants that can handle it, while at the same time
removing most of the workload from the less capable peers. In addition, Peers can provide their corresponding
Superpeer with static information about the resources they manage. Thus, when a Superpeer receives a query, it
can forward the query only to those Peers whose resources match the static criteria. The Peers will then reply with any
local resource information that also matches the dynamic part of the query.

While such two-tier approach is widely implemented by unstructured P2P systems, in our framework we organize
Superpeers using Chord [4], a well known DHT-based system. There are two main reasons for this. The first one
is that the Chord structure can be used to quickly resolve queries based on static information. The second reason is
that the structure of Chord allows to distribute a query to all nodes in the overlay avoiding redundant (i.e., duplicate)
messages. In particular, we implemented an algorithm for “dynamic querying” over a DHT, described in Section 3.1.
Such algorithm allows to distribute the query to as many nodes as it is required to locate the desired information,
instead of flooding the entire network for every query. This means that the cost of the lookup is further reduced,
depending on the amount of matching resources that exist in the system and the number of the results required by the
user.

The architecture of the system is schematically represented in Figure 1. Four types of components are defined:

• Superpeers: The main components of the system. They are organized in a Chord network and implement the
dynamic querying algorithm. Each one is responsible for a number of Peers.

• Peers: Provide information about the resource they manage. The information is provided to the corresponding
Superpeer following either a push or pull model (see below).
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Superpeer

Peer

Client

Figure 1: The architecture of the proposed system. Dashed lines indicate the fingers nodes in the Chord overlay.

• Clients: Connect to a Superpeer and issue queries on behalf of a user, also managing the delivery of query
responses to the user.

• Cache Servers: The entry-points for Peers and Superpeers to the network (not shown in the figure). They hold
a list of the most recently joined Superpeers and return a subset of that list to any requestor.

As mentioned above, our system provide support for both push and pull models for the dissemination of resource
information (especially regarding the dynamic information). This approach is similar to the one used in the Monitoring
and Discovery System (MDS) of Globus Toolkit 2, where the various GRIS modules register themselves (and their
static information) to a GIIS module [1]. Each GRIS has the autonomy to decide whether it will periodically push the
dynamic information to its corresponding GIIS (push model), or it will wait for the GIIS to query each of its registered
GRISs for that information, when needed (pull model). In our system, each Peer can be configured to send to its
Superpeer its static information only, or to periodically send up-to-date copies of its dynamic information.

Notice that, while Figure 1 shows only one Superpeer overlay, the system can be extended to include multiple
overlays, one for each type of static resource information, as proposed in [15]. This will greatly reduce the number of
Superpeers contacted during a dynamic query lookup.

In the remainder of this section we briefly describe the algorithm of dynamic querying over a DHT as it has been
implemented in our system.

3.1 Querying dynamic resources
Dynamic querying [14] is a technique used to reduce the traffic generated in unstructured P2P networks. In dynamic
querying, the peer that initiates a search controls the query propagation by sending it only to a subset of its neighbors
and with a small Time-to-Live (TTL). If such first attempt does not produce a sufficient number of results, the origi-
nating peer will send the query again to a different set of neighbors with increased TTL. This process is repeated until
the expected number of results is received, or until all the neighbors have been queried.

The algorithm of dynamic querying over a DHT, as outlined in [2], uses a combination of the dynamic querying
approach with an algorithm for efficient broadcast over DHTs proposed in [16], which allows to perform a broadcast
operation with minimal cost in a Chord-based P2P network. In a network of N nodes, a broadcast message originating
at an arbitrary node reaches all other nodes after exactly N − 1 messages, with logN steps. In order to explain how
dynamic querying over a DHT works, we first recall the algorithm of broadcast over DHTs.
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Figure 2: An example of broadcast over a Chord DHT.

Broadcast over a DHT.

Let us consider a fully populated Chord ring with N = 2m nodes and an m-bit identifier space. Each Chord node
x has a finger table, with fingers pointing to nodes x + 2i−1, where i = 1...m. Each of these m nodes, in turn, has
its fingers pointing to other m nodes in the same way. The broadcast initiator node sends the query to all nodes in its
finger table, and in turn, these nodes do the same with nodes in their finger tables. In this way, all nodes are reached in
m steps. Since the same node may be pointed to by multiple fingers, the following strategy is used to avoid redundant
messages. Each message sent by a node contains a “limit” argument, which is used to restrict the forwarding space of
the receiving node. The “limit” argument of a message sent to the node pointed to by finger i is finger i + 1. Figure 2
gives an example of such Chord ring with m = 3 (eight nodes, three-bit identifier space and finger tables with three
entries). In this example, Node 1 initiates the broadcast of a data item D. The “limit” is sent together with the data
item. Three steps of communication between nodes are shown with solid, dashed, and dashed-dotted lines. Node 1
reaches all other nodes via N − 1 = 7 messages within m = 3 steps. The same procedure applies to Chord rings with
N < 2m (i.e., not fully populated rings). In this case, the number of distinct fingers of each node is likely to be logN ,
on the average.

Dynamic querying over a DHT.

In brief, the algorithm of dynamic querying over a DHT works as follows. The initiator node (that is, the Superpeer
that submits the query to the network on behalf of a Client) starts by processing the query locally, and by forwarding
the query to its first n unique fingers. These fingers will in turn forward the query to all nodes in the portions of the
network they are responsible for, following the broadcast algorithm described above. When a Superpeer node receives
a query, it checks for local resources matching the query criteria and, in case of match, it sends a query hit directly to
the initiator node, which will in turn forward it to the Client. After sending the query to its first n unique fingers, the
algorithm proceeds iteratively as follows.

First, the initiator waits for a given amount of time, which is the estimated time needed by the query to reach the
farthest node under the nth unique finger, plus the time needed to receive a query hit from that node. Then, if the
number of received query hits is equal or greater than the number of query hits desired by the Client, the initiator node
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terminates. Otherwise, it continues the search by sending the query to other k unique fingers after the first n ones. The
value of k is chosen by calculating the number of nodes that must be contacted to obtain the desired number of query
hits on the basis of the estimated popularity of the resource, which is in turn calculated as the ratio between the current
number of received query hits and the estimated number of nodes reached through the first n unique fingers (which is
likely to be 2n [4]).

The iterative procedure above is repeated until the desired number of query hits is obtained, or there are no more
fingers to contact. Note that, if the resource popularity is properly estimated on the first iteration, two iterations -
including the first one - are sufficient to obtain the desired number of query hits.

4 Implementation and evaluation
We implemented the system using Java. Basically, each one of the system components (Superpeer, Peer, Client, and
Cache Server) has been implemented as a separate Java application that can be installed independently from the other
components. TCP sockets have been used to let the system components communicate with each other.

For building the Superpeer overlay we used Open Chord, an implementation of the Chord algorithm by the Uni-
versity of Bamberg [5]. Open Chord provides an API that enables the use of a Chord DHT within Java applications.
However, that API provided only methods for joining/leaving a Chord network and inserting/removing keys from it.
In order to perform dynamic querying over the overlay, we extended the Open Chord API by adding the functionality
to send arbitrary messages between nodes in the system. Such send operation is asynchronous, since the controlled
broadcast performed by dynamic querying is executed in a Breadth-First-Search rather than a Depth-First-Search fash-
ion. In addition, we added a functionality which allows a developer to access the (sorted) finger table of Chord, as
needed by the dynamic querying algorithm.

In the implementation of the dynamic querying algorithm, the number of unique fingers contacted during the first
iteration is set to 6. As the number of nodes reachable through n distinct fingers is likely to be 2n (see Section 3.1),
the number of Superpeers contacted during the first iteration is 26 = 64 on the average.

While queries are distributed using the Chord overlay, results are sent directly to the query initiator. That is, if
a Peer contains resources that match the query criteria, it issues a query hit message directly to the Superpeer that
initiated the dynamic querying (i.e., the Superpeer to which the Client that issued the query is connected). That
Superpeer will in turn forward the query hits over its open socket with the Client, as they arrive.

4.1 Experimental results
In this section we discuss the performance of the proposed resource discovery system in a real Grid scenario. We
focused on the efficiency of the system in terms of number of messages and time needed to complete a search. For our
experiments we used the Grid’5000 testbed, a highly reconfigurable, controllable and easy to monitor Grid platform
gathering nine sites geographically distributed in France and featuring a total of 5000 CPUs [6]. Grid’5000 is an ideal
testbed for our experiments, since not only it allowed us to test the system in a real Grid platform, but it also contains
sites from all of France, which more closely matches the environment of a global-scale Grid.

We used several hosts from four Grid’5000 sites (Rennes, Sophia, Nancy, and Orsay) for a total of 410 nodes across
six clusters of those sites. Each host was used to execute a number of independent Peer and Superpeer applications.
In order to distribute the load across sites, Peers and Superpeers have been uniformly distributed across nodes. Thus,
given the number of available nodes, N , and chosen the overall number of Superpeers, S, and the average number of
Peers connected to each Superpeer, P , we executed an average number of S/N Superpeers and P Peers on each node.

Each Peer and Superpeer entered the system at random times. It was, thus, quite unlikely for a Superpeer to have
in its finger table Superpeers running on the same host, or for a Peer to connect to a Superpeer in the same machine.
We then initiated several Clients, each of which submitted the same batch of queries, each one having search criteria
with a different probability to match resources in the network. Given a query, we define the probability of match, p,
as the ratio between the total number of resources that match the query criteria, and the total number of Peers in the
network. When submitting the query, each Client specifies the desired number of query hits R, i.e., the number of
resources to be located that match the query criteria.

We measured two performance parameters:

• The number of Superpeers contacted by each query.
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Table 1: Number of Superpeers contacted to perform queries with different probabilities of match (p) and different
numbers of required results (R). On the left part of the table, values measured in a network with S=5000 and P=10.
On the right part, values for S=5000 and P=50.

S=5000 P=10 S=5000 P=50
R=1 R=10 R=100 R=1000 R=1 R=10 R=100 R=1000

p=0.001 72 1067 5000 5000 70 310 2238 5000
p=0.01 72 147 1342 5000 77 68 283 2217
p=0.1 66 73 138 1191 68 65 69 293
p=1.0 69 71 71 129 63 63 63 63

• The time required by each query hit to reach the Client.

Notice that the first parameter corresponds to the number of messages generated by the algorithm of dynamic
querying over the DHT. For the second parameter, a significant value is the time required by the Rth query hit to reach
the Client (where R is the desired number of results), since it represents the amount of time needed to reach the goal
of the search.

The experiments have been performed in two network scenarios: 1) S = 5000 and P = 10; 2) S = 5000 and
P = 50. For each network scenario we submitted queries with four different probabilities of match (p = 0.001, 0.01,
0.1, and 1.0) and four numbers of desired query hits (R = 1, 10, 100, and 1000), and for all these queries we measured
both the number of Superpeers contacted and the time required by each query hits to reach the Client.

Table 1 reports the number of Superpeers contacted during the various experiments. As shown in the table, the
search of one resource (R = 1) generates an average of 68.4 messages, which is close to the average number of
Superpeers reachable through the first 6 fingers. In most experiments, in fact, at least one Peer responded with a query
hit during the first iteration of the search.

For higher values of R, the number of Superpeers contacted depends significantly on the value of p. This is
because for small values of p the first iteration does not produce enough results, and so at least another iteration must
be performed. Let us consider, for example, the case of R = 10 in the network with P = 10. When p = 0.01, the
value of 147 indicates that an average of 7 fingers have been contacted (6 of which during the first iteration), while for
p = 0.001 the value of 1067 corresponds to 10 fingers. Similar behavior applies to the network with P = 50 and for
other values of R.

As shown in the table, in some cases all 5000 Superpeers are contacted during the search. This happens when
the algorithm, on the basis of the estimated popularity of the resource, calculates that all remaining fingers must be
contacted to obtain the desired number of results. This, obviously, will or will not lead to success based on the actual
presence of enough matching resources in the network. In every case, the number of messages is bound to the number
of Superpeers, without redundancy.

Figure 3 shows the time needed to receive the query hits in some of the experiments described above. For space
limitations, we show only the results of searches with R = 100 and R = 1000 for various values of p. For some
values of p, the search did not succeed to find the desired number of resources, because they were not available. For
example, with p = 0.001, it is impossible to find 1000 resources when S = 5000 and P = 10. That’s why Figure 3a
reports only results for p = 0.01, 0.1, and 1.0. The same applies to Figure 3c and Figure 3d.

For all values of R, in both network scenarios, the time needed to receive the Rth query hit was in the order of
few hundreds milliseconds. As expected, comparing the results for a given value of P and R (for example Figure 3b)
we note that times increase as p decreases. Moreover, lines for higher values of p are more flat, indicating that all
query hits arrive in a small time interval. This happens because for high values of p the search is completed in only
one iteration, and so there is not the additional delay of a new round of search. When a second iteration of search is
performed (as for p = 0.001 in Figure 3b), the line shows two trends: the first part with few results arriving at different
times from the first 6 fingers, the second part, more flat, with several results arriving in a more close time sequence.

Comparing the arrival times of query hits for the same values of R but different values of P (for example, Figure 3a
vs Figure 3b), we find that a higher value of P leads to reduced times for any value of p. This is due to the higher
number of Peers - and thus matching resources - that are reached during the first iteration of dynamic querying when P
is higher. Such result confirms that the two tier-approach leads to reduced search time when there is a good proportion
between the number of Superpeers and Peers in the system.

As a final remark, all the experimental results presented above demonstrate the efficiency of the implemented
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Figure 3: Time to receive query hits under different probabilities of match, in four scenarios: (a) P=10, R=100; (b)
P=50, R=100; (c) P=10, R=1000; (d) P=50, R=1000. In all cases S=5000. The values on the x-axis represent the
arrival numbers of the received query hits. The values on the y-axis are the times needed to receive the various query
hits after the query submission.

system. The dynamic querying algorithm was able to limit and control the number of messages generated by the
search in function of the probability of match and the number of desired results, while its coupling with the two-tier
architecture allowed to ensure very low search times in all the experimental scenarios.

5 Conclusions
We designed and implemented a Grid resource discovery system that combines the flexibility of unstructured P2P
systems and protocols, such as the two-tier architecture and the dynamic querying approach, with the efficiency of
structured DHT-based systems like Chord.

The performance of the implemented system has been evaluated in a real Grid environment using the Grid’5000
testbed. The experimental results presented in the paper demonstrated the efficiency of the algorithm of dynamic
querying over a DHT to control the number of messages generated by the resource discovery tasks, and its coupling
with the two-tier architecture ensured very low search delays in all experimental scenarios.
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