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Abstract
We discuss a framework supporting fast prototyping as well as tuning of distributed applications. The approach

is based on the adoption of a formal model that is used to describe the orchestration of distributed applications. The
formal model adopted (Orc by Misra and Cook) can be used to support semi-formal reasoning about the applications
at hand. We build on results achieved earlier and show here how the framework can be used to derive and evaluate
alternative orchestrations of a well know parallel/distributed computation pattern; and describe how the same formal
model can also be used to support generation of prototypes of distributed applications skeletons directly from the
application description.

1 Introduction
The programming of large distributed systems, including grids, presents significant new challenges. For example,
the “invisible grid” and “service and knowledge utility” (SOKU) concepts advocated in the EU NGG expert group
documents [1, 2] both identify new challenges to be addressed. In particular, an increasingly substantial programming
effort is required to set up appropriate “computing structure” for a distributed application: significant efforts have to be
invested in the development of a suitable, manageable and maintainable distributed application skeleton, and, ideally,
this skeleton should be validated, at least informally, before starting actual coding, to avoid spending large amounts of
time coding only to discover when running application tuning experiments that one or more of the original skeleton
features is wrong.

What is needed is a framework that allows the application programmer to develop a specification of a distributed
system using a user-friendly formal notation. Existing formal tools such as the π-calculus[3] are usually perceived
to be distant from the “reasoning schemas” which are typical of programmers, and, moreover, their usage requires
significant formal calculus capability and experience combined with substantial effort. Therefore, we need something
that can replace full formal reasoning about a system’s properties with “lightweight” reasoning combining properties
of the notation with the developer’s domain expertise and experience. Typically such reasoning will allow focus on
the particular case, rather than the general and, in this way, significantly reduce the overhead of formal development.
In addition, the availability of such a specification will afford the possibility of generating automatically a skeletal
implementation that may be used for experimentation prior to full implementation.

We earlier identified Orc by Misra and Cook [4, 5] as a suitable notation to act as a basis for the framework
proposed above. We showed how Orc is particularly suitable for addressing dynamic properties of distributed systems,
although in the current work, for the sake of simplicity, we will consider only static examples/properties. We also
showed how an Orc-based framework can be developed to support large distributed application development and
tuning[6, 7]. Figure 1 outlines the main features of Orc, in particular those related to the Orc specifications used here.
In this work we build on these previous results and the add two main contributions.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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A site, the simplest form of Orc expression, either returns a single value or remains silent. Three operators (plus recursion) are provided for
the orchestration of site calls:

1. > (sequential composition):E1 > x > E2(x) evaluates E1, receives a result x, calls E2 with parameter x. The abbreviation
E1 � E2 is used for E1 > x > E2 when evaluation of E2 is independent of x.

2. (parallel composition): (E1 E2) evaluates E1 and E2 in parallel. Evaluation of the expression returns the merged output streams
of E1 and E2.

3. where (asymmetric parallel composition) E1 where x :∈ E2 begins evaluation of both E1 and x :∈ E2 in parallel. Expression
E1 may name x in some of its site calls. Evaluation of E1 may proceed until a dependency on x is encountered; evaluation is then
delayed. The first value delivered by E2 is returned in x; evaluation of E1 can proceed and the thread E2 is halted.

Orc has a number of special sites, including RTimer(t), that always responds after t time units (can be used for time-outs). The notation
(|i : 1 ≤ i ≤ 3 : wi) is used as an abbreviation for (w1|w2|w3).
In Orc processes may be represented as expressions which, typically, name channels which are shared with other expressions. In Orc a
channel is represented by a site [4]. c.put(m) adds m to the end of the (FIFO) channel and publishes a signal. If the channel is non-empty
c.get publishes the value at the head and removes it; otherwise the caller of c.get suspends until a value is available.

Figure 1: Minimal Orc compendium

On the one hand, we show how a cost analysis technique can be described and used to evaluate properties of alter-
native implementations of the same distributed application. We present Orc models of two alternative and equivalent
implementations of a typical distributed use-case and we determine which should perform better by measuring the
number and kind of communications performed using a measure of communication cost. To evaluate the communi-
cation patterns of the two implementations, we consider metadata denoting locations where parallel activities have to
be performed. The metadata is set up according to the principles stated in our work at the CoreGRID Symposium[6].
While metadata can be used to describe several distinct aspects of a system, here we consider only metadata items of
the form 〈site/epression, location〉 representing the fact that site/expression is run on the resource location. A
methodology is introduced to deal with partial user-supplied metadata that allows labelling of all the sites and pro-
cesses appearing in the Orc specification with appropriate locations. The location of parallel activities, as inferred
from the metadata, is then used to cost communications happening during the application execution.

On the other hand, we describe a compiler tool that allows generation of the skeleton of a distributed applica-
tion directly from the corresponding Orc specification. The user can then complete the skeleton code by providing
the functional (sequential) code implementing site and process internal logic, while the general orchestration logic,
mechanisms, schedule, etc. are completely dealt with by the compiler generated code. Finally, we show how the
code generated from the Orc specifications shown here perform as expected when executed on a distributed target
architecture.

The two steps allows us to conclude that we have a framework supporting design, development and tuning of
distributed grid applications.

2 Use Case: Parallel Computation of Global State Updates
We introduce a use case to discuss how a costing mechanism can be associated with Orc, via metadata, in such a
way that alternative implementations/orchestrations of the same application can be compared. We consider a common
parallel application pattern: data items in an input stream are processed independently, with the results being used to
update a shared state (see Fig. 2). We consider the easy case, where state updates are performed through an associative
and commutative function σ : State × Result → State. This kind of computation is quite common. For example,
consider a parallel ray tracer: contributions of the single rays on the scene can be computed independently and their
effect is “summed up” onto the final scene. Adding effects of a ray on the scene can be performed in any order, without
affecting the final result. We provide two alternative implementations of this particular parallelism exploitation pattern,
parametric in the type of actual computation performed, and we model them in Orc.

2.1 Design 1: no proxy
The first design is based on the classical master/worker implementation where centralized entities provide the items of
the input stream and collate the resulting computations in a single state. The system comprises a taskpool (entclassnic-
seriesmodeling the input stream), TM, a state manager, SM and a set of workers, Wi. The workers repeatedly take
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Figure 2: Logical schema corresponding to the two Orc specifications (grey boxes represent sites, white ovals represent
processes)

tasks from the taskpool, process them and send the results to the state manager. The taskpool and state manager are
represented by Orc sites; the workers are represented by processes (expressions). This specification corresponds to the
logical schema in Fig. 2 left and can be formulated as follows:

system(TP, SM) , workers(TP, SM)

workers(TP, SM) , | i : 1 ≤ i ≤ N : Wi(TP, SM)

Wi(TP, SM) , TP.get >tk> compute(tk) >r> SM.update(r) � Wi(TP, SM)

2.2 Design 2: with proxy
In this design, for each worker, Wi, a proxy, proxyi, is interposed between it and the state manager to allow accumula-
tion of partial results before forwarding to the state manager. A proxy executes a ctrlprocess in parallel with a commit
process. The control process receives from its worker, via a channel wci, a result and stores it in a local state manager,
LSMi. Periodically, the commit process stores the contents of the LSMi in the global state manager, SM. A control
thread (and control process) is represented by a process; a local state manager is a site. This corresponds to the schema
in Fig. 2 right.

system(TP, SM,LSM) , proxies(SM, LSM) | workers(TP )

proxies(SM, LSM) , | i : 1 ≤ i ≤ N : proxyi(SM, LSMi)

proxyi(SM, LSMi) , ctrlprocessi(LSMi) | commit(LSMi)

ctrlprocessi(LSMi) , wci.get >r> LSMi.update(r) � ctrlprocessi(LSMi)

commiti(LSMi) , Rtimer(t) � SM.update(LSMi) � commiti(LSMi)

workers(TP ) , | i : 1 ≤ i ≤ N : Wi(TP )

Wi(TP ) , TP.get >tk> compute(tk) >r> wci.put(r) � Wi(TP )

3 Communication Cost Analysis
We introduce now a procedure to determine the cost of an Orc expression evaluation in terms of the communications
performed to complete the computation modelled by the expression.

First we make some basic assumptions concerning communications. We assume that a site call constitutes 2
communications (one for the call, one for getting the ACK/result): we do not distinguish between transfer of “real” data
and the ACK. We also assume an interprocess communication constitutes 2 communications. In Orc this is denoted
by a put and a get on a channel. (Note: although, in Orc, this communication is represented by two complementary
site (channel) calls, we do not consider this exchange to constitute 4 communications.) We identify two cases for
sequential composition with passing of a value:
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• site > x > site represents a local transfer of x (cf. a local variable) and so is assumed not to represent a
communication, while

• site >x> process, process >x> site and process >x> process all constitute 2 communications.

Finally, we consider how communications may overlap in a parallel computation. We assume a simple and effective
model: for Orc parallel commands the communication cost mechanism should take into account that communications
happening “internally” to the parallel activities overlap while those involving shared external sites (or processes) do
not. Therefore, when counting the communications happening within an Orc expression such as:

Wi(TP ) , TP.get >tk> compute(tk) >r> wci.put(r) � Wi(TP )

we observe the calls to site TP are calls to external, shared sites, whereas the calls to wci are related to internal sites.
When considering the calls related to the execution of N processes Wi computing M tasks, we count all the calls
related to TP but we assume that all the communications related to different wci are actually overlapped. Therefore,
assuming perfect load balancing, we will count for M calls to TP and M

N calls to wci.
To evaluate the number and nature of communications involved in the computation of an Orc expression, we

perform two steps.
First we determine the metadata associated with the Orc specification. We assume the user has provided metadata

stating placement of relevant sites/processes as well as strategies to derive placement metadata for the sites/processes
not explicitly targeted in the supplied metadata (as discussed in previous work[6]). Thus, for the first specification
given above, assuming we initially have the metadata

M = {〈site, TP 〉, 〈site, SM〉, 〈system, strategy(FullyDistributed)〉}

we can derive the metadata

M = {〈site, TP 〉, 〈site, SM〉, 〈TP , freshLoc(M)〉, 〈SM, freshLoc(M)〉,
〈workers, freshLoc(M)〉〈workeri, freshLoc(M)〉}

where freshLoc returns a resource name not previously used (thus implementing the strategy(FullyDistributed)
policy). The strategy FullyDistributed indicates that all processes/sites should be placed on unique locations, unless
otherwise indicated (by explicit placement). This metadata is ground as all sites and all non-terminals have associated
locations. For details of metadata derivation see Figures 3 and 4.

The second step counts the communications involved in evaluation of the Orc specification, following the assump-
tions made at the beginning of this Section.

Consider the first design above. In this case, we assume N worker processes, computing M tasks, with two sites
providing the task pool and the state manager (TP and SM). The communications in each of the workers involve shared,
non-local sites, and therefore the total number of communications involved is 2M +2M , the former term representing
the communications with the task pool and the latter to those with the state manager. All these communications are
remote (as the strategy is FullyDistributed), involving sending and receiving sites/processes located on different re-
sources, and therefore we cost them r time units. (Had they involved sites/processes on the same processing resources
we would have costed them l time units.) Therefore, the overall communication cost of the computation described by
the first Orc specification with M input tasks and N workers is 4Mr. This is independent of N , as expected, as there
are only communications related to calls to global, shared sites.

For the version with proxy, we have N Wi, N ctrlprocessi processes and N LSMi sites, plus the globally shared
TP and SM sites. We assume, from the user supplied metadata, that each 〈ctrlprocessi, LSMi〉 pair is allocated
on the same processing element, distinct from the processing element used for workeri, and that all these processing
elements are in turn distinct from the two used to host TP and SM . (Again, see Figures 3and 4 for full derivation
details.) The communications involved in the computation of M tasks are 2M non-local communications (those
taking tasks out of the TP), 2M

k non-local communications (those sending partial contributions to SM, assuming k state
updates are accumulated locally before invoking a global update on SM) and 2× 2× M

N local communications (those
performed by the ctrlProcesses to get the result of W computations and perform local LSM updates, assuming an
even distribution of tasks to workers). Therefore the cost of the computation described by the second Orc specification
with M input tasks and N workers is

2Mr +
2Mr

k
+

4Ml

N
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Design 1: no proxy

The (semi-)automatic generation of a communication profile from metadata has the following stages:

1. Add initial metadata.

2. Generate additional metadata for all sites and non-terminals within the specification.

3. Deduce the cost of communications from metadata.

Assume that TP and SM are sites and that all sites and workers are to be located on distinct locations: a fully distributed
strategy.

1. Initially M = {〈site, TP 〉, 〈site, SM〉}
2. Add 〈system, strategy(FullyDistributed)〉 ∈ M.

3. Thus M = {〈site, TP 〉, 〈site, SM〉,〈system, strategy(FullyDistributed)〉}.

4. Process the item 〈system, strategy(FullyDistributed)〉. This replaces this item with 〈system, freshLoc(M)〉
and adds 〈workers, strategy(FullyDistributed)〉.

5. Now process the metadata item 〈workers, strategy(FullyDistributed)〉 This replaces this metadata item with
〈workers, freshLoc(M)〉 and 〈workeri, strategy(FullyDistributed)〉.
Now M = {〈site, TP 〉, 〈site, SM〉, 〈workers, freshLoc(M)〉, 〈workeri, strategy(FullyDistributed)〉}.

6. Process the item 〈workeri, strategy(FullyDistributed)〉. This replaces this item by 〈workeri, freshLoc(M)〉,
〈SM, freshLoc(M)〉 and 〈TP , freshLoc(M)〉 giving:
M = {〈site, TP 〉, 〈site, SM〉 〈SM, freshLoc(M)〉 〈TP , freshLoc(M)〉, 〈SM, freshLoc(M)〉,
〈workers, freshLoc(M)〉 〈workeri, freshLoc(M)〉}

7. M is now ground because all sites and all non-terminals have associated locations.

8. All the required metadata is now available to allow analysis of the specification with respect to communications. The
specification is inspected for occurrences of:

(a) site calls: there are two, both originating within the process Wi: TP.get and SM.update. From the metadata, it
can be seen that, in each case, the site called and process Wi are in different locations and so each constitutes 2
remote communications.

(b) explicit process communication via a channel: there is none in the specification.

(c) communication as part of an instance of the sequential operator: there is none.

(d) communication as part of an instance of the asymmetric parallel operator: there is none.

Thus, for each task processed, there are four remote communications, so to process M tasks requires 4M remote
communications.

Figure 3: Full derivation of metadata and communication count relative to site/process locations for design 1
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Design 2: with proxy

Assume that SM, TP and proxyi are all in separate locations. Assume that Wi and LSMi are in the same location as
proxyi. That is, the essential difference from Specification 1 is the local accumulation of results in LSM i before
forwarding to SM.
Assume that the average number of items stored locally before a commit to the SM is k.

1. Initially M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉}.

2. Add 〈system, strategy(FullyDistributed)〉 and 〈proxyi, strategy(Conservative)〉. The intention is that the
(more local) proxyi directive will override the (more global) system directive.

3. M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉, 〈system, strategy(FullyDistributed)〉,
〈proxyi, strategy(Conservative)〉}.

4. Add 〈workeri, sameLoc(proxyi)〉 indicating that Workeri should be placed at the same location as proxyi

5. Process the “FullyDistributed” directive and remove the corresponding metadatum.

6. M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉, 〈system, freshLoc(M)〉,
〈proxies, strategy(FullyDistributed)〉, 〈workers, strategy(FullyDistributed)〉,
〈proxyi, strategy(Conservative)〉, 〈workeri, sameLoc(proxyi)〉}.

7. Process 〈proxies, strategy(FullyDistributed)〉. Note, at this point 〈workers, strategy(FullyDistributed)〉
cannot be processed because of the 〈workeri, sameLoc(proxyi)〉 directive.

8. M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉, 〈system, freshLoc(M)〉, 〈proxies, freshLoc(M)〉,
〈proxyi, loc(PEi)〉, 〈proxyi, strategy(Conservative)〉, 〈workers, strategy(FullyDistributed)〉,
〈workeri, sameLoc(proxyi)〉}.
The location of proxyi is named with an eye to the sameLoc(proxyi) directive.

9. Process 〈workers, strategy(FullyDistributed)〉 together with 〈workeri, sameLoc(proxyi)〉.
10. M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉, 〈system, freshLoc(M)〉, 〈proxies, freshLoc(M)〉,

〈proxyi, loc(PEi)〉, 〈proxyi, strategy(Conservative)〉, 〈workers, freshLoc(M)〉,
〈workeri, strategy(FullyDistributed)〉, 〈workeri, loc(PEi)〉 }

11. Process 〈proxyi, strategy(Conservative)〉 and 〈workeri, strategy(FullyDistributed)〉 (the latter results in
no new metadata).

12. M = {〈site, TP 〉, 〈site, SM〉, 〈site, LSMi〉, 〈system, freshLoc(M)〉, 〈proxies, freshLoc(M)〉,
〈proxyi, loc(PEi)〉, 〈ctrlprocessi, loc(PEi)〉, 〈commiti, loc(PEi)〉, 〈LSMi, loc(PEi)〉
〈workers, freshLoc(M)〉, 〈workeri, loc(PEi)〉 }

13. The specification is now inspected as above to determine the numbers of the various communication types:

(a) Site calls: TP.get is made from Wi to a freshLoc(M) and so constitutes two remote communications.
LSMi.update is made from PEi to LSMi and so constitutes 2 local comms.; note, however, that for
different i these calls are overlapped in parallel: thus we count 2

N
calls per task processed for N worker

processes/proxies.
SM.update is made from PEi to a freshLoc(M) and so constitutes 2 remote comms.

(b) Inter process comms.: wci.get is between proxyi and Wi both placed on PEi and so constitutes 2 local
comms. Again, here we count 2

N
, as above.

(c) Communication as part of an instance of the sequential operator:
wci.get >r> LSMi.update(r). Here both wci.get and LSMi.update(r) are executed within ctrlprocessi

and so no comm. takes place.

For each task processed there are 2 remote comunications + 4
N

local communications. Moreover, for each k tasks
processed there are 2 remote communications. Thus, to process M tasks requires 2M remote communications + 4M

N

local communications + 2M/k remote communications.

Figure 4: Full derivation of metadata and communication count relative to site/process locations for design 2

CoreGRID TR-0102 6



ORC
program Compiler

RTS

SITE/PROCESS 1 main

SITE/PROCESS k main
launcher

user 
code
hook

user 
code
hook

user 
code
hook

USER

Figure 5: Orc2Java compiler tool (left) and user code implementing a dummy worker process (right)

Now we can compare the two designs with respect to communications. Simple algebraic manipulation allows us
to conclude that the second will “perform better”, that is will lead to a communication profile costing fewer time units,
if and only if

k >
rN

rN − 2l

That is, if and only if the number of local state updates accumulated at the LSMis before sending update messages
to SM is larger than one (typically l � r). In section 4 we show experimental results that validate this statement.

4 Automatic Distributed Code Framework Generation
To support experimentation with alternative orchestrations derived using the methodology discussed above, we de-
veloped a tool for the generation of distributed Java code from an Orc specification (Fig. 5 (left). Being a compiler
producing actual Java distributed code, the tool is fundamentally different from the Orc simulator provided by the Orc
designers on the Orc web page[8].

In particular, our fully automatic tool takes as input an Orc program (that is a set of Orc expression definitions
plus a target expression to be evaluated) and produces a set of Java code files that completely implement the “parallel
structure” of the application modelled by the Orc program. That is, a main Java code is produced for each of the
parallel/distributed entities in the Orc code, suitable communication code is produced to implement the interactions
among Orc parallel/distributed entities, and so on. Orc sites and processes are implemented by distinct JVMs running
on either the same or on different machines and communications are implemented using plain TCP/IP sockets. A
“script” program is also produced that takes as input a description of the target architecture (names of the nodes
available, features of each node, interconnection framework information, and so on) and deploys the appropriate Java
code to the target nodes and finally starts the execution of the resulting distributed application.

The Java code produced provides hooks to programmers to insert the needed “functional code” (i.e. the code
actually implementing the sites for the computation of the application results). The system can be used to perform
fast prototyping of grid applications, and the parallel application skeleton is automatically generated without the need
to spend time programming all of the cumbersome details related to distributed application development (process
decomposition, mapping and scheduling, communication and synchronization implementation, etc.) that usually takes
such a long time. Also, the tool can be used to run and compare several different skeletons, such that the users may
evaluate “in the field” which is the “best” implementation.

Using the preliminary version of our Java code generator1, we were able to evaluate the performances of the appli-
cation described in Section 2. Figure 5 (right) shows the code supplied by the user to implement a dummy worker pro-
cess. The method run of the class is called by the framework when the corresponding process is started. The user has
an OrcMessage call(String sitename, OrcMessage message) call available to interact with other
sites, as well as one-way call mechanisms such as void send(String sitename, OrcMessage msg) and
OrcMessage receive(). If a site is to be implemented, rather than a process, the user must only subclass the
Site framework class providing an appropriate OrcMessage react(OrcMessage callMsg) method.

1We are indebted to Antonio Palladino who has been in charge of developing the prototype compiler
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Figure 6: Comparison among alternative versions of the grid application described in Section 3

Fig. 6 shows the results we obtained when running the two versions of the application, automatically derived from
the alternative Orc specifications previously discussed. The version labeled “no proxy” corresponds to the version
with a single, centralized state manager site which is called by all the workers, while the version labelled “with proxy”
corresponds to the version where workers pass results to proxies for temporary storage, and they, in turn, periodically
call the global state manager to commit the local updates. The relative placement of processes and sites is determined
by appropriate metadata as explained in previous sections. The code has been run on a network of Pentium based
Linux workstations interconnected by a Fast Ethernet network and running Java 1.5.0 06-b05.

As expected, the version with proxy performs better than the one without, as part of the overhead deriving from
state updates is distributed (and therefore parallelized) among the proxies, while the amount of task computation is
unchanged and the state update times are negligible both w.r.t. task computation time and w.r.t. communication times.

This is consistent with what we have concluded in Sec. 2. On the target architecture considered, we measured

r = 653µsecs

and
l = 35µsecs

and therefore the proxy implementation is convenient when k is larger than 1.12 to 1.01 depending on the number of
workers considered (1 to 8, in this case). In this experiment, LSMi performed an average of 1.9 local updates before
calling the SM site to perform a global state update and therefore the constraint above was satisfied.

5 Conclusions
Taking our earlier work as the starting point, we have shown here how alternative designs of a distributed application
(schema) can be assessed by describing them in a formal notation and associating with this specification appropriate
metadata to characterise the non-functional aspect of interest, in this case, communication cost. We derived cost
estimations that show that the second implementation, the one including the proxy design pattern, should perform
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better than the first one, in most cases. Then, using our prototype Orc compiler we “fast prototyped” two versions
of the distributed application and ran these versions on a distributed set of Linux workstations. The times measured
confirmed the predictions. Overall the whole procedure demonstrates that

• under the assumptions made here, we can, to a certain degree, evaluate alternative implementations of the same
application using metadata-augmented specifications only, and in particular, without writing a single line of
code;

• and that the Orc to Java compiler can be used to generate rapid prototypes that can be used to evaluate applica-
tions directly on the target architecture.

Future work will involve (semi-)automating the derivation of metadata from user-specified input (currently a man-
ual process) and investigating the use of the framework with a wider range of skeletons[9]: experience suggests that
skeletons potentially provide a restriction from the general that may prove to be fertile ground for our approach.

References
[1] Next Generation GRIDs Expert Group. NGG2, Requirements and Options for European Grids Research 2005-

2010 and Beyond, July 2004.

[2] Next Generation GRIDs Expert Group. NGG3, Future for European Grids: GRIDs and Service Oriented Knowl-
edge Utilities. Vision and Research Directions 2010 and Beyond, January 2006.

[3] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, Cambridge,
1999.

[4] Jayadev Misra and William R. Cook. Computation orchestration: A basis for a wide-area computing. Software
and Systems Modeling, 2006. DOI 10.1007/s10270-006-0012-1.

[5] David Kitchin, William R. Cook, and Jayadev Misra. A language for task orchestration and its semantic properties.
CONCUR, LNCS No. 4137, pages 477–491. Springer, 2006.

[6] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Adding metadata to Orc to support reasoning about
grid programs. Proceedings of the CoreGRID Symposium 2007, pp. 205–214, Rennes (F), August 2007. Springer.
ISBN: 978-0-387-72497-3

[7] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Management in distributed systems: a semi-formal
approach. Proc. of Euro-Par 2007 - Parallel Processing 13th Intl. Euro-Par Conference, LNCS No. 4641, Rennes
(F), August 2007. Springer.

[8] William R. Cook and Jayadev Misra. Orc web page, 2007. http://www.cs.
utexas.edu/users/wcook/projects/orc/.

[9] Murray Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel programming.
Parallel Computing, 30(3):389–406, 2004.

CoreGRID TR-0102 9


