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Abstract

Grid applications are increasingly being developed as workflows using well-structured, reusable components.
We argue that components with well-defined semantics facilitate an efficient scheduling on the Grid. We have pre-
viously developed a user-transparent scheduling approachfor Higher-Order Components (HOCs) – parallel imple-
mentations of typical programming patterns, accessible and customizable via Web services. Our approach combines
three scheduling techniques: using cost functions for reducing communication overhead, reusability of schedules for
similar workflows, and the aggregated submission of jobs. Weanalyze the user-transparent scheduling from four
perspectives, namely: the easiness of integration within already existing Grid scheduling systems, the gains for in-
dividual users, the resource provider advantages, and the robustness with respect to execution failures. We perform
our evaluation using the KOALA Grid scheduler extended to support our user-transparent scheduling, which we run
on the DAS-2 system combining over 200 nodes at five sites in the Netherlands. The experimental results show an
increase in throughput by more than 100%, a descreasing of the response time by 50%, and a failure reduction by
45% for the considered scenarios.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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1 Introduction

Grid technology provides a means for harnessing the computational and storage power of widely distributed collections
of computers. Scheduling in a Grid environment is a complicated task and usually requires specific knowledge about
the application being scheduled [3], in particular, the volume and the frequency of communication. Since the com-
munication behavior of an arbitrary application cannot be foreseen during the setup of an application, it is typically
the task of the application developer or the end user to provide information about the application’s communication
properties [5].

Grid applications are difficult to be developed from scratch: because of their complexity and scale, they increas-
ingly rely on pre-packaged pieces of software which are called components, modules, templates, etc. in different
approaches. In this paper we use Higher-Order Components (HOCs [16]) - reusable components that are customizable
for particular applications using parameters which may be either data or code. HOCs include the required configura-
tion to run on top of a standard Grid middleware [17] and can beremotely accessed via Web Services. Thereby, HOCs
abstract over the technical features of Grid platforms and allow their users to concentrate on their applications. While
providing more structure and reuse in the application development process, program components imply a change of
focus for scheduling: it becomes mandatory to explore new solutions for mapping both single components and their
compositions to available Grid resources.

We aim at user-transparent scheduling, i.e. techniques that free the end user from specifying application’s commu-
nication behavior. Our approach to user-transparent scheduling makes use of: software components for building appli-
cations, scheduling cost-functions for lowering the communication costs, a reusable workflow technique for avoiding
the need for a repeated scheduling when a workflow recurs, andan aggregated submission technique for avoiding
multiple submissions of job to a single execution site. In this paper we present and analyze these techniques and their
combined use for component-based Grid applications.

We use the KOALA system [21] as the basic scheduler for testing our user-transparent approach. KOALA supports
co-allocation – the scheduling of parallel application on Grid resources. We enhance KOALA to schedule component-
based applications using their specific communication properties.

The structure of this paper is as follows. First, we describeHigher-Order Components and the user-transparent
scheduling approach; second, we introduce our integrationand evaluation methodology; and third, we prove its ad-
vantages in the context of KOALA Grid scheduler and DAS-2, the Dutch Grid system, deployed at five sites in the
Netherlands.

2 Context and Background

In this section, we describe the general context in which ourapproach to the user-transparent scheduling of component-
based applications on Grids is developed. We first introducethe targeted environment of this work, and the concept of
HOC – Higher-Order Component – for Grid application programming.

2.1 Environment Description

The main elements of the Grid environment considered in thiswork are as follows (see Figure 1):
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Figure 1: Grid Environment: High-Level Overview
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• Node: a resource for computing and storing data;
• Site: a collection of nodes placed in a single administrative domain;
• Work unit (or job): a sequential code executed on a single node;
• Application: computation composed of work units;
• Resource Manager (RM): a specific software that allocates resources and monitors applications submitted by

the users at a site level;
• Security Gate: a software that authenticates and authorizes user requests and invokes the RM whenever an

application is submitted;
• HOC Client: a computer used for submitting HOC-based applications to the Grid built out of several sites;
• HOC Service Node: a resource providing a Web service for accessing a HOC implementation;
• Grid Resource Dispatcher: software that maps HOC applications onto a Grid, i. e. , it aggregates resources

(nodes and sites) and reserves them for work unit execution.

In this environment, the HOC client submits a request for a specific HOC-based application by means of the
HOC Web service. The HOC Web service generates a scheduling description of the application and passes it to the
scheduler for running the application on the execution environment. Once the resource dispatcher aggregated the
required amount of resources for the application, it returns a handle to the HOC Web service and steps aside from
further interaction. Further, it is the task of the HOC Web service to actually submit the application to the Grid and to
monitor its progress. In this manner, any HOC-based application can be scheduled over a Grid environment without
the need of direct user interaction.

2.2 Higher-Order Components

HOCs are high-level programming constructs, pre-packagedwith (parallel) implementations and the required middle-
ware configuration files. Each HOC implements a generic pattern of parallel behavior with a specific communication
structure. A HOC can be customized for a particular application by providing it with arguments which may be either
data or application-specific code. HOCs were given their name (Higher-Order Components) because of their code pa-
rameters, in analogy with higher-order functions which accept functions as arguments. HOCs are made accessible to
the Grid user via specialized Web services. Every HOC is by default configured to run on top of a specific middleware
(Globus).

Figure 2: Examples of Communication Structures in HOCs

Currently three different HOCs are available: Farm-HOC [16], Pipeline-HOC [13] and Wavefront-HOC [14] (see
Fig. 2). The Farm-HOC is used for running ”embarrassingly parallel” applications without dependencies between
tasks. All farm implementations have in common the existence of aMasterprocess that partitions data; the parts are
then processed in parallel using multipleWorkerprocesses. In contrast, in the Pipeline-HOC, all inputs pass through
each pipeline stage in the same order, while the parallelismis achieved by overlapping the processing of several input
instances. The third component studied in the paper, the Wavefront-HOC, implies a set of computations advancing as
a hyperplane in a multidimensional variable space.
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2.3 User-Transparent Scheduling for HOCs

Applications using HOCs have well-defined requirements in terms of data distribution and communication schemata,
i. e. , which data is sent, when, and to how many processors, iscompletely determined by the HOC type and does not
depend on the particular application where that HOC is used.Many different applications can be built using the same
HOCs or combinations of them, but our user-transparent scheduling of HOC-based applications works independently
of application-specific code and data parameters.

The following techniques are combined together in our implementation:

• Cost functionstake in account the different characteristics of the environment in which a HOC application
is executed. Various costs functions are employed for achieving an adequate distribution of resources to the
work units (the ”where?” part of scheduling). In [8], we haveidentified bandwidth-aware cost function, which
provides the highest communication time reduction for the most HOCs;

• Reusability of schedules for similar workflowsavoids successive job submissions with similar communication
patterns. Job submission operations are expensive in Grids[10]. In our approach, different applications using
the same HOCs will be mapped onto the same resources;

• Aggregated submission of work unitsexploits the fact that in many cases work units receive similar parameters
for execution (similarly to an MPI application). Our scheduling system will place multiple job execution requests
to avoid the necessity for individual HOC work unit submissions.

While user-transparent scheduling of single HOCs is already a complex operation, compositions of HOCs also
occur in practice and must be scheduled on the Grid. This can be the case, when scientific applications are divided
into several subproblems of different sizes and complexities. We schedule applications that make use of multiple
HOCs composed together by applying our submission technique recursively to each single HOC in the composition,
processing the global HOC first, and then down to inner ones.

3 Implementation of the Scheduler

We describe in this section our approach for implementing user-transparent scheduling in general and the metrics used
to evaluate the performance of our implementation in different scenarios.

3.1 Integration of Existing Systems

We have chosen a layered solution for supporting HOC scheduling, because it provides the advantage of easily incor-
porating already existing scheduling solutions, and because of its flexibility in addressing various classes of parallel
applications. We were interested in a minimal integration effort while taking advantage of already existing infrastruc-
tures. Based on existing Grid schedulers (KOALA [21], Pegasus [6], GridBus [4]) or brokers (GRUBER [9]), we have
chosen a three-layers scheduling architecture [7] represented in Figure 3, and consisting of:

1. Translation layerfor mapping the user’s selection of a component to an associated communication pattern and
for using a description of this model in order to select and provide as input to the cost management. This layer
is also responsible for identifying whenever the reusable technique could be invoked and reusable submissions
can be performed;

2. Mapping and observation layerfor tracking allocated resource status and work units’ progress and for taking
action whenever a failure occurs and additional resources are needed. Any already existing Grid scheduling
infrastructure is incorporated by this layer in our approach;

3. Resource management layerfor acquiring and aggregating adequate resources to fulfilluser objectives (reser-
vation). This layer implements the aggregated submission of work units as described before and it is usually
represented by different supporting tools of a Grid scheduler (i.e, runners for KOALA or site-selectors for GRU-
BER).
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Figure 3: The Three-Layer, User-Transparent Scheduling Infrastructure

3.2 Performance Evaluation of Scheduling

We make two assumptions about the Grid on which our scheduling architecture operates. First, providers are interested
in better utilizations of their resources (i.e., throughput); second, consumers want to achieve better performance for
their applications and to acquire as many resources as possible when their applications require a lot of computational
power (e.g., short response times). We employ two metrics for quantifying the performance of our user-transparent
scheduling approach from both a user and a provider point of interest:

Metric-I. Response Time(RT ):
RT =

∑

i=1..N

RTi/N (1)

with RTi being the individual job time response andN being the number of jobs processed during the
execution period [11];

Metric-II. Throughputis defined as the number of work units executed on the Grid in a pre-defined interval of
time [11].

There are many cases in which a Grid resource or service may fail in a dynamic, heterogeneous, and large-scale
environment. Failures may occur in a Grid at infrastructure, middleware, application, and user levels, and may be
transient or permanent; for a review of research focusing oncauses of failures in Grid we refer to [18]. Due to the
heterogeneity of Grids and their sheer size, failures appear much more often than in traditional parallel and distributed
environments [10, 19]. We employ a third performance metric, namely:

Metric-III. Failure Rate[18], defined as the ratio of completed jobs to the total amount of jobs submitted from
a fixed set of jobs.

4 KOALA-based User-Transparent Scheduling Evaluation

In this section, we report the results of our work to support user-transparent scheduling within the KOALA Grid
scheduler and the experimental results for three HOC types on the Dutch Grid system, DAS-2 [15].

4.1 Integration Feasibility

For efficiently scheduling HOCs and applications built of them, we extended the KOALA scheduler with support for
cost-based mapping of applications to resources, aggregated submission and reusable schedule identification. The
standard KOALA version provided resource reservation and job co-allocation, basic job submission, tracking of job
execution and re-submissions.

Our enhanced KOALA version adds the implementation of a specialized KOALA runner, theMDRunner, for
handling HOC-based applications as explained in the following. Each HOC client starts such aMDRunner, while
KOALA processes jobs as co-allocated jobs and performs adequate reservations.

In the resulting infrastructure, the responsibilities aredistributed as follows:

CoreGRID TR-0086 5



• HOCs provide a high-level interface to the end user, allowing to compose applications in terms of patterns such
as a wavefront or a pipeline;

• TheMDRunner makes the scheduling of HOC applications transparent to theuser. It automatically generates
the scheduling requirements descriptions for instantiating a specific HOC pattern (Farm, Pipeline, Wavefront,
etc); it also decides if aggregated submission or schedule reuse could be employed for the current application;

• The KOALA engine performs the resource acquisition and aggregation, by collecting information about re-
sources, keeping track of application requirements and scheduling components to different Grid sites;

• TheMDRunner and the KOALA engine share the functionalities of monitoring the application progress and
the preservation of application-specific constraints, e. g. , time limits to be met.

TheMDRunner implements six cost functions that optimize over differentcommunication requirements [8]:

1. link count-aware: optimizes over the number of network connections a message has to pass;

2. bandwidth-aware: optimizes over the available bandwidth of a link;

3. latency-aware: optimizes over the latency of a link;

4. network utilization-aware: optimizes over the instantaneous network utilization at the submission time;

5. application communication-aware: optimizes over the communication pattern;

6. predicted variance-aware: optimizes over the predictednetwork bandwidth availability during the entire execu-
tion.

The gain in performance of each of these costs is analyzed in the following subsections.

4.2 Performance Results

We have performed 10 runs of each HOC type using synthetic applications that imitate the behavior of a real application
in terms of communication patterns and computation requirements. We present our results for the three performance
metrics as defined in the previous section. Each HOC-based application was composed of 15 to 20 work units and
exchanged 20 messages with variable sizes between 1Mb to 10 Mb.

4.2.1 User Gains

We focus first on the response time for the user, achieved by our scheduling approach. The results are provided in
Table 1, with all the values being expressed as percentages of the response time achieved under the KOALA’s default
scheduling policy. As can be observed, our techniques support a reduction of the response time by 60% in average.

Table 1: Average Response Time (%)
Synthetic HOC Workload Type

Cost Farm Pipeline Wavefront
Function 20×30×1M 20×30×10M 20×30×5M
CF (Close-to-File) 51.89 70.09 73.20
Link 45.37 55.06 65.40
Bandwidth 40.93 53.67 60.95
Latency 48.47 48.89 68.75
Network 48.54 50.52 67.15
Application 42.72 56.53 58.83
Predicted 44.02 53.63 57.96
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4.2.2 Resource Provider Satisfaction

We show now the throughput performance when schedules are reused for HOC-based applications that exhibit the
same workflow, i.e., they employ the same HOCs in identical order. Table 2 captures our results. We observe a high
throughput improvement due to the schedule reuse: the reduction of the scheduling overhead allows to increase the
total throughput by more than 100% in our test scenario, where synthetic HOC applications were submitted under a
Poisson distribution. These applications involved 20 workunits, 30 messages of sizes between 1 and 10 Mb (detailed
in the Tables’ headers) [8].

Table 2: Throughput Gains (%)
Synthetic HOC Workload Type

Cost Farm Pipeline Wavefront
Function 20×30×1M 20×30×10M 20×30×5M
CF 93.7 112.9 101.8
Link 100.7 116.3 161.0
Bandwidth 118.6 126.4 170.4
Latency 117.4 133.6 161.6
Network 106.3 134.8 170.2
Application 101.0 117.4 127.3
Predicted 118.2 123.6 194.0

4.2.3 Failure Analysis

Now, we turn our attention to analyzing the success rate of HOC applications on DAS-2. We classify failures into two
types [10]:

• job failure is defined as the incapacity to run a job at a certain site, error that results in the entire workflow
failure;

• workflow failure is defined as the incapacity to either start or complete the workflow; this error is usually caused
either due to a failure in submission or in the resource acquisition mechanism.

For this analysis, we experimented with over 20k work units (corresponding to≈ 1k workflows). Our results are
presented in Table 3. While, in average, the rate of failuresdropped under user-transparent scheduling approach, the
work unit execution failures increased due to the DAS-2 uSLA[12] for stopping jobs longer than 15 minutes and our
approach for schedule reuse. Thus, a more careful approach should be devised for these scenarios in the future.

Table 3: Detailed Failures (%)
Failure Type User-Transparent Basic Scheduling
Remote environment failure 5 11
GridFTP failure 0 0
Work unit execution failure 4 2
Workflow submission timeout failure 1 5

Total job failures 9 13
Total workflow failures 10 18

5 Related Work

In the context of application-to-resource dynamic binding, the optimal mapping problem has been approached in
different ways for various types of systems.

For example, Aldinucci et al. [1] focus on the ASSIST coordination language - a language that allows to describe
arbitrary graphs of modules which are connected by typed streams of data. A specialized compiler translates the graph
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of modules into a network of processes on the Grid, under pre-specified rules. The difference in our approach is
that we avoid application migration, because this feature is costly in practice, and we use instead the schedule reuse
technique.

In [2], the Performance Evaluation Process Algebra (PEPA) for expressing performance models is described. PEPA
[2] is also used in [1] for the analysis of the static information about a structured parallel application, given by its flow
graph. In our work, we combine the information given by the static structure of a parallel program with monitoring
information gathered at runtime.

Furmento et al. [20] analyze two main policies when considering application performance for Grids:Minimum Ex-
ecution TimeandMinimum Cost. They also introduce three cost models (unit cost per unit time and processor). Based
on these assumptions, they derive various prediction results about the performance of a specific application (linear
equation solver). Their initial results demonstrated the importance of finding the effective utilization of Grid resources
by high performance applications, as well as the importanceof information associated with various components in the
system. The experiments were conducted in a small computational setting composed of at most three systems that had
between 1 and 16 processors, while no Grids were considered.

6 Conclusions

In this paper we introduced the user-transparent scheduling approach for Higher-Order Components and analyzed it
from four perspectives, namely: the easiness of integration within already existing Grid scheduling infrastructures,
the gains for individual users, the resource provider satisfactions and the change in job failures. The motivations of
this work are Grid applications that increasingly rely on workflows using well-structured, reusable components. Our
approach combines several scheduling techniques, like cost-based technique for lowering the communication costs,
reusable technique for avoiding the need for a repeated scheduling phase when a workflow recurs, and aggregated sub-
mission technique. We performed our evaluation by extending the KOALA Grid scheduler to support user-transparent
scheduling, and by running the extended version on the DAS-2testbed combining over 200 nodes at five sites in
the Netherlands. Our experimental results show an increasein throughput with more than 100%, a lowering of the
response time by 50%, and a failure reduction by 45% for the considered scenarios.
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