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Abstract

Grid applications are increasingly being developed as flawis using well-structured, reusable components.
We argue that components with well-defined semantics fatglian efficient scheduling on the Grid. We have pre-
viously developed a user-transparent scheduling apprimddigher-Order Components (HOCs) — parallel imple-
mentations of typical programming patterns, accessibiecaistomizable via Web services. Our approach combines
three scheduling techniques: using cost functions foraeducommunication overhead, reusability of schedules for
similar workflows, and the aggregated submission of jobs. awayze the user-transparent scheduling from four
perspectives, namely: the easiness of integration witheéady existing Grid scheduling systems, the gains for in-
dividual users, the resource provider advantages, andthetness with respect to execution failures. We perform
our evaluation using the KOALA Grid scheduler extended fopsut our user-transparent scheduling, which we run
on the DAS-2 system combining over 200 nodes at five sitesérNgtherlands. The experimental results show an
increase in throughput by more than 100%, a descreasingeaktiponse time by 50%, and a failure reduction by
45% for the considered scenarios.

This research work is carried out under the FP6 Network ofliecce CoreGRID funded by the European Commission (Conitgl-2002-
004265).



1 Introduction

Grid technology provides a means for harnessing the conipaghand storage power of widely distributed collections
of computers. Scheduling in a Grid environment is a compgitaask and usually requires specific knowledge about
the application being scheduled [3], in particular, theumoé and the frequency of communication. Since the com-
munication behavior of an arbitrary application cannotte$een during the setup of an application, it is typically
the task of the application developer or the end user to geowiformation about the application’s communication
properties [5].

Grid applications are difficult to be developed from scratobcause of their complexity and scale, they increas-
ingly rely on pre-packaged pieces of software which areedatomponents, modules, templates, etc. in different
approaches. In this paper we use Higher-Order Compone@€¢H16]) - reusable components that are customizable
for particular applications using parameters which mayitteeedata or code. HOCs include the required configura-
tion to run on top of a standard Grid middleware [17] and careloeotely accessed via Web Services. Thereby, HOCs
abstract over the technical features of Grid platforms dlogvaheir users to concentrate on their applications. \&hil
providing more structure and reuse in the application dgraknt process, program components imply a change of
focus for scheduling: it becomes mandatory to explore ndutisos for mapping both single components and their
compositions to available Grid resources.

We aim at user-transparent scheduling, i.e. techniqué$rd®athe end user from specifying application’s commu-
nication behavior. Our approach to user-transparent sdimgdnakes use of: software components for building appli-
cations, scheduling cost-functions for lowering the comiuation costs, a reusable workflow technique for avoiding
the need for a repeated scheduling when a workflow recursaaragregated submission technique for avoiding
multiple submissions of job to a single execution site. is gaper we present and analyze these techniques and their
combined use for component-based Grid applications.

We use the KOALA system [21] as the basic scheduler for tgstim user-transparent approach. KOALA supports
co-allocation — the scheduling of parallel application atd@esources. We enhance KOALA to schedule component-
based applications using their specific communication gntigs.

The structure of this paper is as follows. First, we descHigher-Order Components and the user-transparent
scheduling approach; second, we introduce our integrati@hevaluation methodology; and third, we prove its ad-
vantages in the context of KOALA Grid scheduler and DAS-2, Butch Grid system, deployed at five sites in the
Netherlands.

2 Context and Background

In this section, we describe the general context in whictapproach to the user-transparent scheduling of component-
based applications on Grids is developed. We first introthuieg¢argeted environment of this work, and the concept of
HOC — Higher-Order Component — for Grid application prognainyg.

2.1 Environment Description

The main elements of the Grid environment considered invibik are as follows (see Figure 1):

Grid Ressour ce Manager
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Node: a resource for computing and storing data;

Site: a collection of nodes placed in a single administeadiomain;

Work unit (or job): a sequential code executed on a singlenod

Application: computation composed of work units;

Resource Manager (RM): a specific software that allocatssurees and monitors applications submitted by

the users at a site level,

e Security Gate: a software that authenticates and autlsouger requests and invokes the RM whenever an
application is submitted;

e HOC Client: a computer used for submitting HOC-based appias to the Grid built out of several sites;

e HOC Service Node: a resource providing a Web service forssiog a HOC implementation;

e Grid Resource Dispatcher: software that maps HOC appdieatonto a Grid, i.e., it aggregates resources

(nodes and sites) and reserves them for work unit execution.

In this environment, the HOC client submits a request for ecgjg HOC-based application by means of the
HOC Web service. The HOC Web service generates a schedwdsaidtion of the application and passes it to the
scheduler for running the application on the executionremvent. Once the resource dispatcher aggregated the
required amount of resources for the application, it retiarhandle to the HOC Web service and steps aside from
further interaction. Further, it is the task of the HOC Webvgz to actually submit the application to the Grid and to
monitor its progress. In this manner, any HOC-based agjgitgan be scheduled over a Grid environment without
the need of direct user interaction.

2.2 Higher-Order Components

HOCs are high-level programming constructs, pre-packagthdparallel) implementations and the required middle-
ware configuration files. Each HOC implements a generic patteparallel behavior with a specific communication
structure. A HOC can be customized for a particular appbeodby providing it with arguments which may be either
data or application-specific code. HOCs were given theiren@tiigher-Order Components) because of their code pa-
rameters, in analogy with higher-order functions whichegtdunctions as arguments. HOCs are made accessible to
the Grid user via specialized Web services. Every HOC is figudieconfigured to run on top of a specific middleware
(Globus).

Wavefront-HOC

Figure 2: Examples of Communication Structures in HOCs

Currently three different HOCs are available: Farm-HOQ [Bépeline-HOC [13] and Wavefront-HOC [14] (see
Fig. 2). The Farm-HOC is used for running "embarrassinglsafyal” applications without dependencies between
tasks. All farm implementations have in common the existersfcaMasterprocess that partitions data; the parts are
then processed in parallel using multifMorkerprocesses. In contrast, in the Pipeline-HOC, all inputs pla®ugh
each pipeline stage in the same order, while the paralléisrohieved by overlapping the processing of several input
instances. The third component studied in the paper, thefidav-HOC, implies a set of computations advancing as
a hyperplane in a multidimensional variable space.
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2.3 User-Transparent Scheduling for HOCs

Applications using HOCs have well-defined requirementgims of data distribution and communication schemata,
i.e., which data is sent, when, and to how many processacenipletely determined by the HOC type and does not
depend on the particular application where that HOC is uskthy different applications can be built using the same
HOCs or combinations of them, but our user-transparentidimg of HOC-based applications works independently
of application-specific code and data parameters.

The following techniques are combined together in our im@atation:

e Cost functiongake in account the different characteristics of the emritent in which a HOC application
is executed. Various costs functions are employed for agtgean adequate distribution of resources to the
work units (the "where?” part of scheduling). In [8], we hadentified bandwidth-aware cost function, which
provides the highest communication time reduction for tlesniHOCs;

e Reusability of schedules for similar workfloagoids successive job submissions with similar commuitioat
patterns. Job submission operations are expensive in @0fisin our approach, different applications using
the same HOCs will be mapped onto the same resources;

e Aggregated submission of work unésploits the fact that in many cases work units receive sinhrameters
for execution (similarly to an MPI application). Our schédg system will place multiple job execution requests
to avoid the necessity for individual HOC work unit submisss.

While user-transparent scheduling of single HOCs is aljreadomplex operation, compositions of HOCs also
occur in practice and must be scheduled on the Grid. This eahédcase, when scientific applications are divided
into several subproblems of different sizes and compksitiwe schedule applications that make use of multiple
HOCs composed together by applying our submission teckmiggursively to each single HOC in the composition,
processing the global HOC first, and then down to inner ones.

3 Implementation of the Scheduler

We describe in this section our approach for implementirmg-transparent scheduling in general and the metrics used
to evaluate the performance of our implementation in défftiscenarios.

3.1 Integration of Existing Systems

We have chosen a layered solution for supporting HOC schegjudecause it provides the advantage of easily incor-
porating already existing scheduling solutions, and bseani its flexibility in addressing various classes of patall
applications. We were interested in a minimal integratitfarewhile taking advantage of already existing infrastru
tures. Based on existing Grid schedulers (KOALA [21], Peigd6], GridBus [4]) or brokers (GRUBER [9]), we have
chosen a three-layers scheduling architecture [7] reptedén Figure 3, and consisting of:

1. Translation layerfor mapping the user’s selection of a component to an assgc@mmunication pattern and
for using a description of this model in order to select aral/jute as input to the cost management. This layer
is also responsible for identifying whenever the reusadténique could be invoked and reusable submissions
can be performed;

2. Mapping and observation laydor tracking allocated resource status and work units’ pesg and for taking
action whenever a failure occurs and additional resourcefi@eded. Any already existing Grid scheduling
infrastructure is incorporated by this layer in our applgac

3. Resource management layfer acquiring and aggregating adequate resources to fusfdr objectives (reser-
vation). This layer implements the aggregated submissiamook units as described before and it is usually
represented by different supporting tools of a Grid schediike, runners for KOALA or site-selectors for GRU-
BER).
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Figure 3: The Three-Layer, User-Transparent Schedulifrgdtructure

3.2 Performance Evaluation of Scheduling

We make two assumptions about the Grid on which our scheglatichitecture operates. First, providers are interested
in better utilizations of their resources (i.e., througf)psecond, consumers want to achieve better performamce fo
their applications and to acquire as many resources adymsgien their applications require a lot of computational
power (e.g., short response times). We employ two metricgdantifying the performance of our user-transparent
scheduling approach from both a user and a provider poimtefest:

Metric-l. Response Tim@gRT):
RT = Y RT,/N (1)
i=1..N
with RT; being the individual job time response andbeing the number of jobs processed during the
execution period [11];

Metric-Il. Throughpuis defined as the number of work units executed on the Grid irealpfined interval of
time [11].

There are many cases in which a Grid resource or service nildag gadynamic, heterogeneous, and large-scale
environment. Failures may occur in a Grid at infrastructunedleware, application, and user levels, and may be
transient or permanent; for a review of research focusingauses of failures in Grid we refer to [18]. Due to the
heterogeneity of Grids and their sheer size, failures appeah more often than in traditional parallel and distréuit
environments [10, 19]. We employ a third performance metraenely:

Metric-Ill. Failure Rate[18], defined as the ratio of completed jobs to the total amotijobs submitted from
a fixed set of jobs.

4 KOALA-based User-Transparent Scheduling Evaluation

In this section, we report the results of our work to suppae#ritransparent scheduling within the KOALA Grid
scheduler and the experimental results for three HOC typaseoDutch Grid system, DAS-2 [15].

4.1 Integration Feasibility

For efficiently scheduling HOCs and applications built cériih we extended the KOALA scheduler with support for
cost-based mapping of applications to resources, aggegabmission and reusable schedule identification. The
standard KOALA version provided resource reservation abdcp-allocation, basic job submission, tracking of job
execution and re-submissions.

Our enhanced KOALA version adds the implementation of aigfized KOALA runner, theMDRunner , for
handling HOC-based applications as explained in the fatligw Each HOC client starts suchMDRunner , while
KOALA processes jobs as co-allocated jobs and performsuategeservations.

In the resulting infrastructure, the responsibilities distributed as follows:
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e HOCs provide a high-level interface to the end user, allgtincompose applications in terms of patterns such
as a wavefront or a pipeline;

e TheMDRunner makes the scheduling of HOC applications transparent togke It automatically generates
the scheduling requirements descriptions for instantipéi specific HOC pattern (Farm, Pipeline, Wavefront,
etc); it also decides if aggregated submission or schedulkgercould be employed for the current application;

e The KOALA engine performs the resource acquisition and egation, by collecting information about re-
sources, keeping track of application requirements anddiding components to different Grid sites;

e TheMDRunner and the KOALA engine share the functionalities of monitgrthe application progress and
the preservation of application-specific constraints, gtime limits to be met.

TheMDRunner implements six cost functions that optimize over differemthmunication requirements [8]:
. link count-aware: optimizes over the number of netwonkreertions a message has to pass;

. bandwidth-aware: optimizes over the available bandwid link;

. latency-aware: optimizes over the latency of a link;

. network utilization-aware: optimizes over the instae@us network utilization at the submission time;

. application communication-aware: optimizes over thmmmnication pattern;

o o~ W N B

. predicted variance-aware: optimizes over the predicgtaiork bandwidth availability during the entire execu-
tion.

The gain in performance of each of these costs is analyzéaifotlowing subsections.

4.2 Performance Results

We have performed 10 runs of each HOC type using syntheticapipns that imitate the behavior of a real application
in terms of communication patterns and computation requérgs. We present our results for the three performance
metrics as defined in the previous section. Each HOC-bagglitation was composed of 15 to 20 work units and
exchanged 20 messages with variable sizes between 1Mb td®10 M

421 User Gains

We focus first on the response time for the user, achieved bgaheduling approach. The results are provided in
Table 1, with all the values being expressed as percentdgles cesponse time achieved under the KOALA's default
scheduling policy. As can be observed, our techniques stippeduction of the response time by 60% in average.

Table 1: Average Response Time (%)

Synthetic HOC Workload Type
Cost Farm Pipeline Wavefront
Function 20x30x1M | 20x30x10M | 20x30x5M
CF (Close-to-File) 51.89 70.09 73.20
Link 45.37 55.06 65.40
Bandwidth 40.93 53.67 60.95
Latency 48.47 48.89 68.75
Network 48.54 50.52 67.15
Application 42.72 56.53 58.83
Predicted 44.02 53.63 57.96
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4.2.2 ResourceProvider Satisfaction

We show now the throughput performance when schedules aseador HOC-based applications that exhibit the
same workflow, i.e., they employ the same HOCs in identicdénrTable 2 captures our results. We observe a high
throughput improvement due to the schedule reuse: the tieduaf the scheduling overhead allows to increase the
total throughput by more than 100% in our test scenario, e/ggnthetic HOC applications were submitted under a
Poisson distribution. These applications involved 20 warks, 30 messages of sizes between 1 and 10 Mb (detailed
in the Tables’ headers) [8].

Table 2: Throughput Gains (%)

Synthetic HOC Workload Type
Cost Farm Pipeline Wavefront
Function 20x30x1M | 20x30x10M | 20x30x5M
CF 93.7 112.9 101.8
Link 100.7 116.3 161.0
Bandwidth 118.6 126.4 170.4
Latency 117.4 133.6 161.6
Network 106.3 134.8 170.2
Application 101.0 117.4 127.3
Predicted 118.2 123.6 194.0

4.2.3 Failure Analysis

Now, we turn our attention to analyzing the success rate oEt@plications on DAS-2. We classify failures into two
types [10]:

e job failure is defined as the incapacity to run a job at a cersite, error that results in the entire workflow
failure;

o workflow failure is defined as the incapacity to either staxtamplete the workflow; this error is usually caused
either due to a failure in submission or in the resource aiipm mechanism.

For this analysis, we experimented with over 20k work uritsiiesponding te= 1k workflows). Our results are
presented in Table 3. While, in average, the rate of faildrepped under user-transparent scheduling approach, the
work unit execution failures increased due to the DAS-2 u$12 for stopping jobs longer than 15 minutes and our
approach for schedule reuse. Thus, a more careful apprbadtdsbe devised for these scenarios in the future.

Table 3: Detailed Failures (%)

Failure Type User-Transparent| Basic Scheduling
Remote environment failure 5 11
GridFTP failure 0 0
Work unit execution failure 4 2
Workflow submission timeout failure 1 5
Total job failures 9 13
Total workflow failures 10 18

5 Reated Work

In the context of application-to-resource dynamic bindittge optimal mapping problem has been approached in
different ways for various types of systems.

For example, Aldinucci et al. [1] focus on the ASSIST cooadion language - a language that allows to describe
arbitrary graphs of modules which are connected by typeasts of data. A specialized compiler translates the graph
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of modules into a network of processes on the Grid, undespeeified rules. The difference in our approach is
that we avoid application migration, because this featsieostly in practice, and we use instead the schedule reuse
technique.

In[2], the Performance Evaluation Process Algebra (PEBAgfpressing performance models is described. PEPA
[2] is also used in [1] for the analysis of the static inforinatabout a structured parallel application, given by ita/flo
graph. In our work, we combine the information given by thatiststructure of a parallel program with monitoring
information gathered at runtime.

Furmento et al. [20] analyze two main policies when congndgapplication performance for Gridslinimum Ex-
ecution TimeandMinimum Cost They also introduce three cost models (unit cost per uni &nd processor). Based
on these assumptions, they derive various prediction tseablout the performance of a specific application (linear
equation solver). Their initial results demonstrated thpartance of finding the effective utilization of Grid resoeis
by high performance applications, as well as the importafagormation associated with various components in the
system. The experiments were conducted in a small compn&setting composed of at most three systems that had
between 1 and 16 processors, while no Grids were considered.

6 Conclusions

In this paper we introduced the user-transparent schegafiproach for Higher-Order Components and analyzed it
from four perspectives, namely: the easiness of integratithin already existing Grid scheduling infrastructyres
the gains for individual users, the resource provider fations and the change in job failures. The motivations of
this work are Grid applications that increasingly rely onrkitows using well-structured, reusable components. Our
approach combines several scheduling techniques, likebesed technique for lowering the communication costs,
reusable technique for avoiding the need for a repeatediatihg phase when a workflow recurs, and aggregated sub-
mission technique. We performed our evaluation by extepthia KOALA Grid scheduler to support user-transparent
scheduling, and by running the extended version on the DAt ed combining over 200 nodes at five sites in
the Netherlands. Our experimental results show an incrieasgoughput with more than 100%, a lowering of the
response time by 50%, and a failure reduction by 45% for timsidered scenarios.
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