European Research Network on Foundations, Software Infrastructures and Applications

for large scale distributed, GRID and Peer-to-Peer Technologies

Peer-to-Peer Metadata M anagement for Knowledge Discovery
Applicationsin Grids

Antonio Congiusta
acongi usta@lei s.unical .it
Sebastien Monnét
Sebasti en. Monnet @ri sa. fr
Paolo Trunfid
trunfio@eis.unical.it

I DEIS, University of Calabria
Via P. Bucci 41C, 87036 Rende, Italy

2 IRISA/INRIA
Campus de Beaulieu, 35042 Rennes cedex, FRANCE

N CoreGRID Technical Report
(oreGRmB— Number TR-0083

——— May 10, 2007

Institute on Knowledge and Data Management

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the Europeam@gssion under the Sixth Framework Programme

Project no. FP6-004265

Peer-to-Peer Metadata Management for Knowledge Discovery
Applications in Grids

Antonio Congiusta
acongi usta@lei s. unical .it
Sébastien Monnét
Sebastien. Monnet@risa.fr
Paolo Trunfid
trunfio@eis.unical.it

1 DEIS, University of Calabria
Via P. Bucci 41C, 87036 Rende, Italy

2 IRISA/INRIA
Campus de Beaulieu, 35042 Rennes cedex, FRANCE

CoreGRID TR-0083
May 10, 2007

Abstract

Computational Grids are powerful platforms gathering cotaponal power and storage space from thousands
of geographically distributed resources. The applicatimmning on such platforms need to efficiently and reli-
ably access the various and heterogeneous distributedroesothey offer. This can be achieved by using metadata
information describing all available resources. It is #iere crucial to provide efficient metadata management ar-
chitectures and frameworks. In this paper we describe thig®f a Grid metadata management service. We focus
on a particular use case: the Knowledge Grid architecturiehwprovides high-level Grid services for distributed
knowledge discovery applications. Taking advantage of@stiag Grid data-sharing service, namelyxMEewm, the
proposed solution lies at the border between peer-to-ys&ras and Web services.

1 Introduction

Computational Grids are powerful platforms gathering cataponal power and storage space from thousands of
resources geographically distributed in several siteesé&lplatforms are large-scale, heterogeneous, geogadphic
distributed and dynamic architectures. Furthermore tt@yain many types of resources such as software tools,
data sources, specific hardware, etc. These resourcesraea spver the whole platform. Therefore, it is crucial to
provide a mean for the applications running on Grids to iaednd access the available resources in such large-scale,
heterogeneous, dynamic, distributed environment.

Each Grid resource can be described by a metadata item (eMa document). Such a metadata document
may contain the 1) the description of a particular resol2r s localization and 3) information on the resource usage
(eg., command line options of a software tool, format of adaiurce, protocol used to access a particular node, etc.).
Thus, given a resource metadata, it is possible to accesedbarce. All the metadata items, describing the whole

This research work is carried out under the FP6 Network oeHewce CoreGRID funded by the European Commission (Conitgl-2002-
004265).

set of resources available in a given Grid have to be manawgea éfficient and reliable way especially in large-scale
Grids.

In this paper we propose a software architecture of a s@l@bld metadata management service. We focus
on a particular use case: metadata management for the Kagevi@rid [6]. The Knowledge Grid is a software
distributed framework that aims to offer high-level Gridhgees for knowledge discovery applications running on
computational Grids. The Knowledge Grid services are harilttop of existing, low-level Grid services such as
GRAM [11], GridFTP [1] or MDS [10].

Within the Knowledge Grid architecture, metadata providésmation about how an object (either a data source
or an algorithm) can be accessed. It consists of informatioits actual location and on its format (for a data source)
or its usage (for an algorithm).

As metadata is actually stored as pieces of data (eg., XM&)fitbey may be treated as such. We propose to take
advantage of the good properties exhibited by an alreadyiegiGrid data-sharing service,dMEM [2, 4], to store
and retrieve metadata. We then build a distributed anda&gld hierarchical index of available metadata.

In the next section we briefly present the architecture ofkhewledge Grid and focus on its metadata man-
agement needs. Section 3 presents the JuxMem Grid datagsisarvice that we use to reliably store and retrieve
resources metadata, then Section 4 describes our propaddtketure for a metadata management Grid service.
Finally, Section 5 presents ongoing work and concludegahjger.

2 TheKnowledge Grid
2.1 Knowledgediscovery in Grids

Nowadays, big companies have to deal with daily generatge mounts of data. They need tools to both store this
information and retrieve knowledge from it. Computatio@aids [13] offering high computational power and large
storage resources can be used to store and process largetamiodata. Furthermore their geographically distributed
nature fits well with the companies architecture. Indeedpames data sources and computational power may be
spread all over the world.

However, performing knowledge discovery over such a disteéd and often heterogeneous architecture, using
data sources and data mining algorithms spread over thdsigdmodes is not a trivial task. Building and running a
distributed knowledge discovery application on a Grid isggihigh-level services. Data sources to be mined have to
be located, furthermore their format has to be discoveratedow (they could be relational databases, text files,. etc.)
As well, data mining algorithms and software tools have tddgelized and their usage has to be known. Then the
computations (data mining algorithms running over dataces) have to be scheduled over available Grid nodes. A
knowledge discovery application can be complex, congistimumerous sequential or parallel data mining algorithms
working on identical or different data sources. Some datsingialgorithm may be run with the data produced by
another data mining algorithm, leading to task dependsnete.

The Knowledge Grid provides high-level services and a @rsendly interface VEGA [8] that allows a user to
easily describe a distributed knowledge discovery aptitinait then takes care of locating the resources (datacesur
algorithms, computational nodes), scheduling tasks, aadwting the application. Within the Knowledge Grid, the
application designer only has to describeadnstract execution plagrwith VEGA, he can even do it graphically. An
abstract execution pladefines at high level the algorithms to be executed and the statrces to be mined. The
Knowledge Grid services (called K-Grid services for shbereafter) are responsible to locate the resources and
services and instantiate the execution plan which becomésstantiated execution plalike the one presented in
Figure 1.

An instantiated execution plan contains a set of tasks -astfigned Grid resources- to be done (data transfers
and computations). It is executed by the K-Grid servicesiindy be refined as resources may become available or
unavailable in a Grid.

2.2 TheKnowledge Grid architecture

The K-Grid services are organized in a two-layer softwaahigecture: 1) the High-level K-Grid layer and 2) the
Core-level K-Grid layer. In its current implementationgttifferent services composing the Knowledge Grid are
Grid services interacting by using the WSRF [9] standarde ®fganization of the K-Grid services is described by

CoreGRID TR-0083 2

<ExecutionPlan type="instantiated">
<Task label="taskl">
<Program href="minos.cs.icar.cnr.it/software/DB2Extractor.xml"
title="DB2Extractor on minos.cs.icar.cnr.it"/>
<Input href:"minos.cs.icar.cnr.it/data/car—imports_de.xml"
title="car-imports.db2 on minos.cs.icar.cnr.it"/>
<Output href="minos.cs.icar.cnr.it/data/imports-85c_db2.xml"
title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
</Task>
<Task label="checkl">
<ResourceCheck method="soft"/>
</Task>
<Task label="task2">
<Program href="minos.cs.icar.cnr.it/software/GridFTP.xml"
title="GridFTP on minos.cs.icar.cnr.it"/>
<Input href="minos.cs.icar.cnr.it/data/imports—BSc_de.xml"
title="imports-85c.db2 on minos.cs.icar.cnr.it"/>
<Output href="abstract hostl/data/imports-85c_db2.xml"
title="imports-85c.db2 on abstract_hostl"/>
</Task>

<Task label="task6">
<Program href:"abstract_hostl/software/autoclass3-3—3.xml"
title="autoclass on abstract hostl"/>
<Input href="abstract_hostl/data/imports-85c_db2.xml"
title="imports-85c.db2 on abstract_hostl"/>
<Output href="abstract hostl/data/classes.xml"
title="classes on abstract_hostl"/>
</Task>

<TaskLink ep:from="taskl" ep:to="checkl"/>
<TaskLink ep:from="checkl" ep:to="task2"/>
<TaskLink ep:from="task2" ep:to="task3"/>

<TaskLink ep:from="task5" ep:to="task6"/>

<Resourcelnstantiation abstractResource="abstract_hostl">
<candidateResource>icarus.cs.icar.cnr.it</candidateResource>
<candidateResource>telesio.cs.icar.cnr.it</candidateResource>

</Resourcelnstantiation>

</ExecutionPlan>

Figure 1: A sample instantiated execution plan.

Figure 2. The High-level K-Grid layer includes services tmmpose, validate and execute distributed knowledge
discovery applications. The main services of the Highll&v&rid services are:

e TheData Access Service (DAS), responsible for data sources and mining results pubdicatnd search.

e TheTools and Algorithms Access Service (TAAS), responsible for data mining and visualization tools and
algorithms publication and search.

e The Execution Plan Management Service (EPMS), allowing to describe a distributed knowledge discovery
application by building an execution graph with constram resources. It generates an abstract execution plan
(resources are not know yet).

e TheResults Presentation Service (RPS), offering services for knowledge discovery results préssion;

The services exhibited by the Core K-Grid layer are:

e The Knowledge Discovery Service (KDS), responsible for metadata management. Every resourcegnod
algorithms and tools, data sources and mining results)eoKtiowledge Grid is described by a metadata item.
In the Knowledge Grid, a metadata item is a XML document starea Knowledge Metadata Repository
(KMR).

e The Resource Allocation and Execution Management Service (RAEMS), responsible to instantiate an ab-
stract execution plan. It uses the KDS service to find regasatisfying the constraints imposed by the abstract
execution plan. It is also responsible for the applicatixecaition management.

CoreGRID TR-0083 3

Hight-level K-Grid layer

TAAS
Tools and algorithms
access service

EPMS
Execution plan
management service

RPS
Results
presentation service

Data access
Service

DAS

Core-level K-Grid |

KDS RAEMS
Knowledge discovery ~¢——®| Resources alloc. and <—>
service exec. manag. service

Figure 2: The Knowledge Grid software architecture.

2.3 Current KDSdesign and limitations

The Knowledge Directory Service (KDS) is responsible fondiang metadata describing Knowledge Grid resources.
A sample metadata in presented by Figure 3. Such resourclesiénhosts, data repositories, tools and algorithms
used to extract, analyze, and manipulate data, executarspand knowledge models obtained as result of mining
processes.

The metadata information is represented by XML documentgdtin a component called Knowledge Metadata
Repository (KMR). The functionalities of the KDS are mosilsed by DAS and TAAS services while publishing and
searching for datasets and tools to be used in a KDD apmitallAS and TAAS services always interact with a local
instance of the KDS, which in turn may invoke one or more otkerote KDS instances.

The KDS exports three main operations:

- publ i shResour ce, used to publish metadata related to a given resource intMR;

- sear chResour ce, for locating resources that match some given searchieriter

-retri eveMet adat a, invoked to retrieve metadata associated to a given resadentified by a provided
KDS URL.

It should be noted that whenpubl i shResour ce is performed, only an interaction between a DAS/TAAS
service and the local KDS is needed, because each KMR irestioes metadata about resources available on the
same Grid node on which the KMR itself is hosted. On the contmhen asear chResour ce is invoked, the
related query is first dispatched from the DAS/TAAS to thdawated KDS service, which then answers by checking
the local KMR, and in turn forwards the same query to remot&SKvith the aim of finding more matches.

Theretri eveMet adat a receives a KDS URL returned by a previous invocation ofgkar chResour ce
operation, and uses it to contact the remote KDS on whichebeurce is available to retrieve the associated metadata
document.

It appears clear, thus, that teear chResour ce is the most complex activity performed by the KDS, because
it involves interactions and coordination with remote &mtes of the same service. On the other hand, it should be
mentioned that the architecture of the Knowledge Grid daggrescribe any particular mode of interaction and/or
protocol between the different KDS instances.

The current implementation, for instance, is adopting ttchspurpose one of the simplest strategies: the query
forwarding is performed by contacting concurrently allleé known remote KDS instances (avoiding loops).

As an enhancement of such early strategy, it would be irttagesorking along the direction of reducing the num-
ber of messages exchanged by the KDSs, as to better suppinorenents in which a large number of KDS instances

CoreGRID TR-0083 4

<DataMiningSoftware name="AutoClass">
<Description>
<KindOfData>flat file</KindOfData>
<KindOfKnowledge>clusters</KindOfKnowledge>
<KindOfTecnique>statistiecs</KindOfTecnique>
<DrivingMethod>autonomous knowledge miner</DrivingMethod>
</Description>
<Usage>
<Syntax>
<Arg description="executable" type="required" value="/usr/autoclass/autoclass">
<Arg description="make a classification" type="alternative" value="-search">
<Arg description="a .db2 file" type="required"/>
<Arg description="a .hd2 file" type="required"/>
<Arg description="a .model file" type="required"/>
<Arg description="a .s-params file" type="required"/>
</Arg>
<Arg description="create a report" type="alternative" value="-reports">
<Arg description="a .results-bin file" type="required"/>

</Arg>
</Arg>
</Syntax>
<Hostname>icarus.cs.icar.cnr.it</Hostname>
<ManualPath>/usr/autoclass/read-me.text</ManualPath>
<DocumentationURL>http://ic-www.arc.nasa.gov/ic/projects/...</DocumentationURL>
</Usage>
</DataMiningSoftware>

Figure 3: An extract from an XML metadata sample for the Au&sS software.

is deployed and also a considerable number of searchingiiqes are invoked. As proposed in the remainder of this
report, a possible solution is the adoption of a sharedibigerd index handled by a Grid data-sharing service and a
peer-to-peer technique, useful for reducing the number@$ khstances contacted by the KDS when forwarding the
search query.

Resources metadata like the one presented by Figure 3 sheuslred in a persistent and fault tolerant storage.
Furthermore, they may be shared by multiple applicationd, sometimes updated. Therefore, it is necessary to
maintain the consistency between the different copiesntiaat exist in the Grid. Thus we propose to use an existing
data-sharing service uXMEM, which offers transparent access to persistent mutabe tastore the XML files
corresponding to metadata items.

3 JuxMem: a Grid data-sharing service

In this section we describe theXIMEM Grid data-sharing service architecture and how it handiratchically data
consistency and fault tolerance.

3.1 A hierarchical architecture

From the user’s perspectiveyIMEM is a service providing transparent access to persistertgbiay shared data.
When allocating memory, the client has to specify in how msites the data should be replicated, and on how many
nodes in each cluster group. This results into the instiotiaf a set of data replicas, associated to a group of peers
calleddata group Usually each node runs one single peer. The allocationifirémeturns a globatlata-1D, which

can be used by the other nodes to identify existing data. Tarmbead and/or write access to a data block, the clients
only need to use this data-ID.

The data group is hierarchically organized, as illustratedrigure 4: theGlobal Data Group (GDG)yathers all
provider nodes holding a replica of the same piece of datas&Imodes can be distributed in different sites, thereby
increasing the data availability if faults occur. The GDGup is divided intoLocal Data Groups (LDG)which
correspond to data copies located in a same site.

1A site is a set of clustered nodes, it can be a physical clugtein a cluster federation, or close from a latency viewyoi

CoreGRID TR-0083 5

In order to access a piece of data, a client has to be attactzesitecific LDG (to “map” the piece of data). Then,
when the client performs the read/write and synchroninatigerations, the consistency protocol layer manages data
synchronization and data transmission between client§4.Bnd GDG, within the strict respect of the consistency
model.

Site A Site B

Figure 4: JuxMem: a hierarchical architecture.

3.2 JuxMem software architecture

The LUXMEM Grid service is composed of a set of layers presented in €i§uihe lower layer Juk is thesIMEM
kernel. It relies on JXTA [16] to offer to the uppers layerdbpsh/subscribe operations, efficient communication and
storage facilities. Every node involved or usingxMEeM is therefore managed in a peer-to-peer way using JXTA.
JXTA is is a set of protocols allowing nodes (Grid nodes, PBi&,) to communicate and collaborate in a P2P manner.
The implementations of these protocols provide the alititgbtain efficient communications on Grids [5].

Above Juk, a fault-tolerance layer is responsible for hidrewal data replication. It offers the concept ®élf-
Organizing Group(SOG), a SOG is a replication group that is able to adapffilsetase of dynamic changes (by
creating new replicas or removing old ones), this providesbility to keep fault tolerance guarantees even in paesen
of failures.

The upper layer is responsible for data consistency manageihserves data access requests, manages locks and
maintain pending requests lists.

A multi-protocol architecture The layers presented above are built as interchangealileasefmodules. There-
fore, it is possible for each data stored by the Grid dataiisgaervice to specify a particular consistency protoeol o
a particular SOG implementation.

The LUXMEM service can not be used in its current design to manage ntatduld additional features must be
provided. Data stored inukMEM is accessible (localizablenly by using its associated data-ID. The following
section presents our approach to build a metadata managsemeice using theux Mem data-sharing service.

4 A Grid metadata management service

From the Knowledge Grid viewpoint, the Grid metadata mansgé service consists of a particular design and
implementation for the KDS service and the KMR repositorie Bervice presented below serves requests from the
TAAS and the DAS High-level K-Grid services but also from RAEMS Core K-Grid service (see Figure 2).

Our approach relies on the use of thexMem Grid data-sharing service prototype presented in the puavi
section. Resources metadata are stored within the Gridstiati@ng service.

CoreGRID TR-0083 6

Consistency management layer

Fault tolerance layer
Self organizing groups (SOG)

' '

JuxMem Kernel
Juk

Figure 5: JuxMem layered software architecture.

4.1 Metadata storageand retrieval

Requirements Metadata items should remain available in the Grid. Theeetbey should be stored infault
tolerantandpersistentmanner. This may provide the ability to access metadatarnrdton in spite of failures and
disconnections. Furthermore, some metadata shouldpdatable In the Knowledge Grid use case, a metadata
item may describe the result of a knowledge discovery tds& result may be refined later which leads to metadata
modifications. If a resource location is changing, it shaalkb be reflected by updating the associated metadata.
Finally, metadata has to be localizable by providing narttepates and constraints upon the described resource.

Storing metadata in a Grid data-sharing service To achieve high availability of metadata despite failures w
propose to store them in theXIMEM Grid data-sharing service. Each metadata item describiegaurce is though
replicated and associated to one unique ID as describedciin8e3. This ID can then be used to retrieve metadata
information stored in the Grid data-sharing service. Aafaility and consistency (eg., in case of concurrent upflates
is then also managed by the Grid data-sharing service. Thadat@ items that will not be updated (e.g. describing
a large data source that will not be updated and will not beedpean take advantage afXIMEM multi-protocol
feature by using a very simple and efficient consistencygmaltwithout synchronization operations. ThugxMEem

is used as dault-tolerant distributedandsharedKMR (see Section 2) anduXMEM's data-IDs are used as KDS
URLs.

Locality Metadata information is strongly linked with the resourcedscribes. Therefore if the resource becomes
unavailable, its corresponding metadata information @digcome useless (it can also become misleading). There-
fore, regarding JuxMem hierarchical architecture, magagdormation should be stored within the site containimeg t
resource it describes (i.e. over one uniqug Mem LDG). If all the nodes of the site fail (due to a power failunegi
computer room for instance) the metadata items of this sit®@ime unavailable but it is also the case of the described
resources. Thus, we choose to store metadata informatitre idescribed resources’ site using only ong M EM

LDG per metadata item. However notice that LDG are reliable@ganizing groups, ie. the failure of a node will
not lead to the loss of metadata items.

4.2 Fault-tolerant distributed indexes

While looking for metadata information using tsearchResourceperation, applicatiodscan provide information
like a name (eg., a data source name “clientdatal” or anitigpname “J48”) or a set of attributes and constraints
as the one in the “Description” section of the metadata prteskin Figure 3. An accurate description of the kind of
requests the KDS service should be able to serve is givertin [1

2In our current use case the applications are the DAS, TAASRKEMS K-Grid services.

CoreGRID TR-0083 7

Therefore it is necessary to have a mean to find a metadattifieletwhich then permit to retrieve the metadata
information itself) using names and attributes that regméthe resource described by the metadata.

Distributed indexes Usual approaches rely on the use of a centralized indexistgisy It can be either a relational
database like MySQL [18] or a LDAP [12] server (used in pregitnowledge Grid implementations). We propose
to use distributed indexes: in each site composing the @ednaintain an index of the published resource metadata
within this site. This index contains tuples consisting loé resource name, attributes (as a byte vector) and the
metadata identifier (itsuk MEM data-1D).

Fault tolerance There again we rely on thayXMEM data-sharing service: the indexes are data items that can be
stored in IXMEM. Therefore they are automatically replicated for fauletahce. Notice that an index only contains
information of its own site, thus its size will remain limit¢few tens of mega-bytes are enough to index thousands of
resources).

Index sharing The WSRF KDS servingublishResourcandsearchResourceequests are clients of theeMEM
service. In each site it is possible to have multiple KDS enhaving mapped the site’s index as illustrated in
Figure 6. The KDS are responsible for parsing the index, fligtlhe metadata identifier, fetching the metadata (using
the identifier) and sending back the retrieved metadataetoatuester (either DAS, TAAS or RAEMS). These tasks
are achieved by interacting with theXIMEM service. It is important to notice that the site index is apief data
stored by IxMEM and mapped by the multiple KDS: the consistency of the sher@ek is ensured by the grid
data-sharing service while new publications occur. Theeshiendex allows KDS instances to retrideeally (on their
node) KDS URLs of metadata describing resources spreadimiessite nodes.

4.3 Bigpicture
4.3.1 Metadata publication

Metadata publications done by the DAS and the TAAS are madeigin thepublishResourceperation provided by
KDS. When a KDS receives such a request:

1. It stores the corresponding XML file withivdMEM,
2. locks the index to ensure no concurrent publish occurs,
3. updates it, adding the new resource (attributes amxdlEm data-I1D of the XML file).

The KDS then releases the lock upon the index. To allow therd{®S to continue serving search requests while
an update occurs, it is possible to use a consistency praatiowing concurrent reads and write. Such a protocol
is available in IXMEM, it is described and evaluated in details in [3]. Note that plblication of a site resource
affects only the index stored in this site and used by thd P&, furthermore resources metadata are also stored on
intra-site UXMEM providers (in LDGS).

4.3.2 Metadata search

When K-Grid services need to search a particular resourtadata, they request the KDS running on the same node
or a randomly chosen remote KDS within their own %itdhe KDS receiving such a request search in its mapped
(in its local memory) index. If the resource is found, it géte corresponding XML file using the data-ID stored in
the index. In this case the resource is available within #messite. If a corresponding resource can not be found in
the local index, the KDS forwards it to one randomly choserskib each other site involved in the Grid using JXTA
peer-to-peer communication layers as illustrated by EigurTo achieve this, a list of KDS is stored and maintained
within the UXMEM Grid data-sharing service. This list is replicated hien&ally in the whole platform using the
GDG/LDG hierarchy presented in Section 3.

At initialization, a KDS maps its site index and the global 8lst, it then add itself into this list. If a KDS does
not answer to a request (either publish or search), it is vechdrom this list. The KDS list is not expected to be
frequently updated as Grid nodes are assumed more stahlpékes in peer-to-peer systems.

3A round robin policy could also be used.

CoreGRID TR-0083 8

TAAS EPMS RPS

KDS e RAEMS D

Node 1

JuxMem data—sharing service

(distributed and replicated KMR)
/

D D KDS
i JuxMem client)
Replicated local - (
pindex Replicated KDS \
list

Replicated Node 2

XML files

(metadata information)

Figure 6: In each site KDS interact with thexXIMEM service to access 1) the local index, 2) the KDS list, and &) th
metadata information itself.

4.4 Technical concerns

From a technical view point the solution we propose impligegrating the JXMEM and the Knowledge Grid re-
search prototypes. JuxMem nodes are managed in a peeetorp@ner, using Sun Microsystems JXTA protocols,
while the other nodes involved in the Knowledge Grid servise the WSRF Grid standard.

The junction between the two different sets of protocolsdaalby the nodes running a KDS: these nodes are
part of both the UxMEM platform, as clients of theukMEM Grid service, and they serve WSRF requests from the
Knowledge Grid servicep(blishResourcandsearchResourge

The KDS are also responsible to parse the distributed inHes distributed nature of the index implies a coopera-
tion between the KDS distributed in different sites all otrer Grid. This cooperation is made is a peer-2-peer manner,
taking advantage of the Grid data-sharing service to stnamage and share neighbor list (the KDS list).

5 Conclusion
Metadata data management in large scale, heterogeneogsaghically distributed and dynamic architectures such
as computational Grids is an important problem. Providinge#icient and reliable metadata management service

allows applications to easily access heterogeneous res®apread over thousands of nodes.
The solution we proposed in this paper takes advantage ed@jrexisting work in Grids. By integrating the

CoreGRID TR-0083 9

JuxMem data-sharing service

(distributed and replicated KMR)

Replicated local Replicated local
index 1 index 2
Replicated Replicated

XML files XML files \
/ ~a

s L os
Node A1 / ,,,,,,,,,,, Replicated| KDS list Node B2

”””””””””””” =

hY
Node B1 KDS

Node A2

Node B3

Site A Site B

—...om Request forwarding among sites

Figure 7: Among sites, KDS cooperate using the hierarclyiceplicated KDS list.

JuxMEM Grid data-sharing service in the design of a metadata mamagfeservice for the Knowledge Grid, XML
metadata files are stored on a fault tolerant and consigtepiost, and are kept close to the resources they describe.
The proposed two-level index hierarchy allows the applicet to get resources located in their site if they exist or
remote ones otherwise, enhancing locality.

The integration of the two research prototypes has beetedtaand we plan to evaluate this solution on a real
Grid platform such as Grid’5000 [17, 7]. The format of thetdizited index should then be further investigated, using
binaries trees for instance. The peer-to-peer cooperatitmeen KDS instances should also be enhanced, for instance
by selecting several KDSs for inter-site cooperation.

Finally, our architecture should be compared to a fullyribsted peer-to-peer solution such as VoroNet [15]. We
plan to perform comparative evaluation versus this system.

References

[1] Bill Allcock, Joe Bester, John Bresnahan, Ann L. CheraderCarl Kesselman, Sam Meder, Veronika Nefedova,
Darcy Quesnel, Steven Tuecke, and lan Foster. Secure diffibiata Transport and Replica Management for
High-Performance Data-Intensive Computing. Hroceedings of the 18th IEEE Symposium on Mass Storage
Systems (MSS 2001), Large Scale Storage in the pége 13, Washington, DC, USA, 2001. IEEE Computer
Society.

[2] Gabriel Antoniu, Marin Bertier, Eddy Caron, Frdric Desp, Luc Boug, Mathieu Jan, Sbastien Monnet, and
Pierre SensFuture Generation Gridschapter GDS: An Architecture Proposal for a Grid Data-Blgg$ervice,
pages 133-152. CoreGRID series. Springer-Verlag, 2006.

CoreGRID TR-0083 10

[3] Gabriel Antoniu, Loc Cudennec, and Sbastien Monnet.eBding the entry consistency model to enable effi-
cient visualization for code-coupling grid applicatioria.6th IEEE/ACM International Symposium on Cluster
Computing and the Gridpages 552-555, Singapore, May 2006. CCGrid 2006.

[4] Gabriel Antoniu, Jean-Francois Deverge, and Sbadi#lennet. How to bring together fault tolerance and data
consistency to enable grid data sharir@@pncurrency and Computation: Practice and Experier(@€), 2006.
To appear.

[5] Gabriel Antoniu, Mathieu Jan, and David A. Noblet. Eriaglthe P2P JXTA Platform for High-Performance
Networking Grid Infrastructures. |Rroceedings of the 1st International Conference on Highfd?arance
Computing and Communications (HPCC '08umber 3726 in Lecture Notes in Computer Science, pages 429
440, Sorrento, Italy, September 2005. Springer.

[6] Mario Cannataro and Domenico Talia. The knowledge gddmmun. ACM46(1):89-93, 2003.

[7] Franck Cappello, Eddy Caron, Michel Dayde, Frdric DezpEmmanuel Jeannot, Yvon Jegou, Stphane Lanteri,
Julien Leduc, Nouredine Melab, Guillaume Mornet, Raymorainyist, Pascale Primet, and Olivier Richard.
Grid’5000: A Large Scale, Reconfigurable, Controlable armhitbrable Grid Platform. IfProceedings of the
6th IEEE/ACM International Workshop on Grid Computing (@'05), Seattle, Washington, November 2005.

[8] Antonio Congiusta, Domenico Talia, and Paolo Trunfio.G/& A Visual Environment for Developing Complex
Grid Applications. InProc. of the First International Workshop on Knowledge Gaitl Grid Intelligence (KGGI
2003) pages 56-66, Halifax, Canada, October 2003. Departménatifematics and Computing Science, Saint
Mary’s University. ISBN 0-9734039-0-X.

[9] Antonio Congiusta, Domenico Talia, and Paolo Trunfio.stfibuted data mining services leveraging WSRF.
Future Generation Computer Systerf8(1):34—-41, January 2007.

[10] Karl Czajkowski, Steven Fitzgerald, lan Foster, andl ®asselman. Grid Information Services for Distributed
Resource Sharing. IIRroceedings of the Tenth IEEE International Symposium ginHerformance Distributed
Computingpages 181-184, San Francisco, CA, August 2001. IEEE Press.

[11] Karl Czajkowski, lan Foster, Nick Karonis, Cral Kessaln, Stewart Martin, Warren Smith, and Steve Tuecke.
Resource Management Architecture for Metacomputing &yste In Proc. IPPS/SPDP:Workshop on Job
Scheduling Strategies for Parallel Processipgges 62—82, March 1998.

[12] Jeff Hodges and Robert Morgan. Lightweight Directorgcass Protocol (v3): Technical Specification. IETF
Request For Comment 3377, Network Working Group, 2002.

[13] Carl Kesselman and lan Fostérhe Grid: Blueprint for a New Computing Infrastructur®organ Kaufmann
Publishers, November 1998.

[14] Carlo Mastroianni, Domenico Talia, and Paolo Trunfioetidata for managing grid resources in data mining
applications.Journal of Grid Computing2(1):85-102, March 2004.

[15] Loris Marchal Olivier Beaumont, Anne-Marie Kermaraud Etienne Rivire. VoroNet: a scalable object network
based on Voronoi tessellations. ImProceedings of 21st IEEE International Parallel & Diditited Processing
Symposium (IPDPS’07).ong Beach, CA, USA, March 2007.

[16] Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz,kgliDuigou, Carl Haywood, Jean-Christophe Hugly,
Eric Pouyoul, and Bill Yeager. Project JXTA 2.0 Super-Pegtudl Network. ht t p: / / www. j xt a. or g/
proj ect/ www docs/ JXTA2. Opr ot ocol s1. pdf ,May 2003.

[17] Grid’5000 Projecthtt p: //www. gri d5000. org/ .
[18] MySQL. http://ww. nmysql . com .

CoreGRID TR-0083 11

