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Abstract

Nowadays huge amounts of electronic data are naturally collected in distributed sites, due to either plural owner-
ship or geographical distribution of the processes that produce data. Moving data to a location for extracting useful
and actionable knowledge is usually considered unfeasible, for either policy or technical reasons. It thus becomes
mandatory to mine them by exploiting the multiple distributed resources close to data repositories. This requires to
develop novel distributed data mining (DM) algorithms and systems, able to return a global knowledge by aggregat-
ing multiple local results. Besides the distributed nature of data under analysis, nowadays researchers have also to
consider the streaming nature of them, which entails approximate on-line methods to mine data stream. This report
introduces requirements, design issues, and typical solutions of distributed DM algorithms. We survey some of the
most important works that recently appeared in the literature on this topic, included the latest proposals regarding
P2P, highly distributed, approximate algorithms. Moreover, we discuss some of the most important proposals con-
cerning stream DM algorithms. Such DM algorithms can be considered as the building blocks for realizing seamless
distributed knowledge extraction processes and systems. Such systems can take advantage of the recent advances in
computational and data Grid, which many researchers consider as the enabling technology for also developing high-
performance knowledge discovery processes and systems. In this report we analyze some significative examples of
distributed and Grid-oriented knowledge discovery systems.

1 Introduction

Data Mining (DM) can be defined as the automatic extraction of useful and actionable knowledge, hidden in huge
amounts of data. It is usually considered as the computational intensive phase of a more complex process of knowledge
discovery, which also involves other important phases, like the cleaning of input raw data or the presentation of
resulting knowledge.

The design of a system for knowledge discovery, and in particular the algorithms and tools for DM, have to consider
that, nowadays, input data are naturally distributed, due to either a plural ownership, or a geographical distribution of
the processes which produce data. Moving all such data to one single location for processing could be impossible due
to either policy or technical reasons. Furthermore, communications between entities owning parts of data may be not
particularly fast and immediate. In this context, the communication efficiency of an algorithm is often more important
than the accuracy of its results.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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Typically, distributed data mining (DDM) algorithms thus involve local data analysis, followed by the generation
of a global data model through the aggregation of the local results.

As suggested before, there are several cases in which data can be distributed among different sites/nodes. In
case of cellular phone networks, each group of cells may have its separate database for performance and resilience
reasons. At the same time, other information about which customers own a given device is only available at the
account department, and is kept separate for privacy reasons. Where a particular data can be found influences the kind
of solutions a problem can have. So, it becomes important to specify in which context an algorithm can profitably be
used.

Moreover, in distributed data mining, it is also important to distinguish between different network speeds, and
their consequences over the chosen solution in terms of computation/communication cost. In other words, considering
both costs of communication and computation, and the result accuracy requirements, we can trade-off between a pure
distributed approach based on moving models, and a more traditional one, based on moving data toward a centralized
mining service. Privacy concerns, on the other hand, may prevent the exploitation of a moving data approach, unless
original data have been perturbed to avoid disclosing private information.

Nowadays the data distribution requirements must often be considered in conjunction with the streaming nature
of data sources. Many critical data mining applications require a nearly immediate result based on single (multiple)
continuous stream (streams) of data. The infinite nature of these data sources is a serious obstacle to the use of most of
the traditional methods, since available computing resources are limited. Therefore, in the last couple of years, on-line
mining of data streams for knowledge discovery has thus become a very important research direction.

In the following we discuss in more detail some of the general issues and requirements related to the above topics,
and illustrate the organization of this report.

Homogeneous and heterogeneous data distribution.In order to discuss the two major classes of data distribution,
we can still consider the cellular phone domain. An example ofhomogeneous data distributioncorresponds to the case
in which each node owns its database, containing the portions of logs referring to the activities of a device, in the area
controlled by a specific group of antennas. Every local database contains different data, but the kind of information is
exactly the same for every node. On the other hand, if we are also interested in data about each customer, nodes owning
different kinds of data need to cooperate. In the example, the cell database could contain the information that a device
stopped for several hours in the same place, whereas the accounting department database knows which customer is
associated with that device and its home address. This situation is referred to asheterogeneous data distribution.

Communication bandwidth and latency issues. A key factor in the implementation of distributed algorithms is
the kind of communication infrastructure available. An algorithm suitable for nodes connected by a high speed net-
work can be of little use if a high latency/low bandwidth WAN is available. Furthermore, for algorithms which entail
several blocking communications/synchronization, a high latency is definitely a serious issue. Hence, efficient dis-
tributed algorithms need to exchange a few data, and avoid global synchronization as much as possible, also because
computation can be inherently unbalanced due to node or data heterogeneity.

Peer-to-Peer Mining. A new interesting example of distributed mining is concerned with peer-to-peer (P2P) highly
distributed databases. The P2P systems, besides file sharing networks, also include, to some extent, GRID computing
environments and sensor networks. Large-scale P2P mining may be very different from the more traditional DDM. For
example, in such systems, there can not be any global synchronization. Nodes must act independently of each other,
on the basis of information exchanged with only a limited neighborhood. Their progress in knowledge extraction thus
becomes speculative, and the global system arrives at convergence with some delay and approximation in the final
results.

Privacy and Multi-party Computation. Distributed data mining could occur between mutually un-trusted parties,
or even between competitors. For example, several competing financial organizations might be interested in jointly
derive a predictive model from data owned by their organizations. If nobody can be trusted enough to collect all the
input data before running a mining tool, privacy will become a primary concern. This problem is referred to as Secure
Multi-party Computation Problem (SMC) in the literature.

DDM algorithms, since are mainly based on merging local models extracted from distributed sites, fall in this
class, since models generated locally might still contain sensitive information that a partner does not want to disclose.
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Stream mining. The streaming nature of sources entails the need of processing data as they arrive. The amount
of previously happened events is usually overwhelming, so they can be either dropped after processing or archived
separately in secondary storage. In the first case access to past data is obviously impossible, whereas in the second
case the cost for data retrieval is likely to be acceptable only for some ”ad hoc” queries, especially when several scan
of past data are needed to obtain just one single result.

Other important differences with respect to having all raw data available and processed at once regard the results.
As previously explained, both data and results evolve continuously. Hence a result is referred to a part of the stream.
Obviously, an algorithm suitable for stream data should be able to compute the ”next step” solution starting from the
previously known one and current data.

Two models can be used for mining streams. The first one is thelandmark model, according to which patterns
mined from data streams are measured from the start of the stream up to the current moment. On the other hand, if
the patterns extracted are time-sensitive, a user can be more interested in theirs changes and trends, so that asliding
window modelcan be more suitable. An alternative model that can be exploited to mine streams is thetilted-time
window one, which is based on the fact that people are often interested in recent changes at a fine granularity, and in
long term changes at a coarse granularity.

Systems to support knowledge discovery processes.In order to support a complete knowledge discovery process
over emerging highly distributed platforms like computational Grids, the most important issue is the integration of
two main requirements: synthesizing useful and usable knowledge from data, and performing complex large-scale
computations leveraging the Grid infrastructure. Moreover, since current research activity on the next generation
Grid and Web is focusing on designing and implementing its mechanisms following theService Oriented Architecture
(SOA) model, we have to choose a SOA-based technology to develop such system.

Organization of the report

In Section 2, we survey some of the most recent proposals concerning DDM and P2P data mining (Section 2.1), and
also discuss some on-going research activities concerning stream mining problems, such as online aggregate evaluation
and approximation, frequency counting, classification and clustering (Section 3). Section 4 surveys some significative
examples of distributed and Grid-oriented knowledge discovery systems. Finally, Section 5 draws some conclusions
and future work.

2 Distributed and stream mining

The use of distributed systems is continuously spreading in several applications domains, where data are naturally
distributed among several parties/entities, and often evolve continuously. Extracting valuable knowledge from raw
data produced by distributed parties, in order to produce a unified global model, may present various challenges
related to either the huge amount of managed data, or their physical location and ownership.

The centralized model, based on uploading data towards a centralized point where a high performance algorithm
is run, is not suitable for such distributed environments. We can recognize numerous reasons for this. The main ones
regard the possible long response time of such mining process, also due to the lack of proper use of existing distributed
resources, and the inappropriateness of centralization due to constraints like limits on the network bandwidth available,
or on the memory space available in the centralized server [34].

We thus need data mining algorithms and systems that pay particular attention to the distributed features of data,
computation and communication resources. It is necessary to devise new scalable approaches for distributed process-
ing of data, controlled by resource available, features of processed data, and also human factors.

The widespread use of wireless networks, and the availability of ubiquitous sensors collecting data for disparate
purposes [5], open new problems for DDM, calling for algorithms that reduce power-consuming communications as
much as possible in favor of local processing of data. Moreover data can arrive in streams [3], and this may call for
algorithms that guarantee approximate results.
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2.1 Distributed and P2P mining algorithms

DDM algorithms typically work by producing a local model per site (see Figure 1). Unfortunately, even if local models
are coherent and accurate with respect to local site repository, inferring a global model by aggregating the local models
may be very complex. A possible solution is to centralize a portion of local data on the node that will be responsible
for model aggregations. Alternatively, we can compute in an exact way part of the global model. This can be used to
compensate for the lacking of some global knowledge if we aggregate by only starting from local models.

Extractor Extractor Extractor

Data Source Data Source Data Source

Data Transformation &Integration

Data Warehouse

Data Mining Tools

Data Mining
Algorithm

Data Source Data Source Data Source

Local Model Aggregation Final Model

Local
Model

Local
Model

Local
Model

Data Mining
Algorithm

Data Mining
Algorithm

Figure 1: The centralized data-warehouse approach vs. a typical distributed data mining framework (from [34]).

Distributed classifiers Distributed classifiers are the best-known examples of DDM algorithms. Such algorithms
are rooted in the well-known ensemble approach [16, 33], originally exploited to improve accuracy of predictive
models. In practice, multiple models are extracted by homogeneous data partitions, also using different methods.
The local models are aggregated by adopting a voting (weighted or un-weighted) schema. This ensemble approach
can be straightforwardly realized in a distributed environment. A notable example of the ensemble approach is the
meta-learning distributed framework, introduced by Chan and Stolfo [35]. In this framework the local base models,
collected at central site, are used to generate meta-data, i.e. a set of validation data classified on the basis of the
predictions generated by the local classifier. Finally, the global model is generated from all such meta-data, thus
producing the final meta-classifier. However, the option of producing the global classifier by counting votes returned
by base classifiers. A problem with the ensemble meta-learned approach lies in the nature of data repositories. For
heterogeneous data, Park et al. noted that it may become impossible to extract inter-site patterns by only merging base
local classifiers. In order to solve this problem, part of data needs to be centralized. An innovative approach to mine
distributed heterogeneous data has been proposed by Kargupta et al. in their Collective Data Mining framework [9].

Distributed Frequent Pattern Mining. A number of parallel algorithms for solving the FIM have been proposed in
the last years [2, 22]. Most of them can be considered parallelizations of the well-known Apriori algorithm.

Zaki authored a good survey on ARM algorithms and relative parallelization schemas [40]. Agrawal et al. [2]
proposed a broad taxonomy of the parallelization strategies that can be adopted for Apriori on distributed-memory ar-
chitectures. The described approaches constitute a wide spectrum of tradeoffs between computation, communication,
memory usage, synchronization, and the use of problem-specific information. The Count Distribution (CD) approach
follows a data-parallel according to which the transaction database is statically partitioned among the processing nodes,
while the candidate setCk is replicated. At each iteration every node counts the occurrences of candidate itemsets
within the local database partition. At the end of the counting phase, the replicated counters are aggregated, and every
node builds the same set of frequent itemsetsFk. On the basis of the global knowledge ofFk, candidate setCk+1 for
the next iteration is then built. Inter-Node communication is minimized at the price of carrying out redundant duplicate
computations in parallel. Count Distribution is an algorithm that can be realized in a distributed setting, since it based
on a partitioned dataset, and also because the amount of information exchanged between nodes is limited. The other
two methods proposed by Agrawal et al., Data and Candidate distribution, require moving the dataset.

Unfortunately in a distributed environment such dataset is usually already partitioned and distributed on distinct
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sites, and can not be moved for several reasons, for example due to the low latency/bandwith network that connects
the sites.

Several DDM FIM algorithms have been proposed, aimed at reducing the amount of communications involved in
the Count Distribution method. FDM [10] constitutes an attempt to reduce the amount of communication entailed in
the sum-reduction of the local counters in the CD parallelization of the Apriori algorithm. In particular, the counters
that are sum-reduced are only the ones that correspond to candidates that have been identified as frequent by at
least one party. Schuster and Wolff [36] then introduced DDM, whose aim is to reduce the number of messages
exchanged by FDM, since this number in presence of non-homogeneity in the database partitions quickly becomes
similar to the ones exchanged by CD. The basic idea of DDM is to verify that an itemset is frequent before collecting
its support from every party. This negotiation before the actual reduction must, of course, be not expensive. The
heuristics adopted allows those parties that have more convincing evidence that a given itemset is frequent, to start the
negotiation. This occurs, for example, if a party computes, by itself, a support of an itemset that is already larger than
the global support threshold. The same authors extend the idea of DDM to a dynamic large scale P2P environment,
i.e., a system based on utilizing free computational/storage resources on non-dedicated machines, where nodes can
suddenly depart/join along with the associated database, thus modifying the global result of the computation. Schuster
and Wolff noted that previous proposals of distributed FIM use broadcasts, global synchronization, various level of
centralization, none of which can be managed in large-scale distributed systems. Moreover, no ones acknowledge the
possibility of node failures. They thus contribute the reduction of the FIM problem in this highly distributed setting
to the well-studied problem of distributed majority votes [38]. The P2P algorithms thus combines sequential miners,
executed locally at each node, with a majority voting protocol to discover, at each node, all of the association rules
that exist in the combined database. Note that also in DDM the distributed ARM algorithm has been seen as a decision
problem in which the participating nodes must decide whether each itemset is frequent or not. The difference here is
that the consensus is not reached by using broadcast and global synchronization, but only communications between
neighboring nodes.

Distributed Clustering. Most of the distributed clustering algorithms can straightforwardly be derived from their
parallel counterparts. Since these parallel algorithms are based on the assumptions that a single dataset is partitioned,
in order to adapt them for a distributed setting, the databases owned by each distributed site must be homogeneous.

In [34] some center-based clustering algorithms are surveyed. One of the most notable example is the work of
Forman and Zhang [18], in which they extend a class of parallel iterative clustering algorithms (K-Means, K-Harmonic
Means, and EM) to inherently distributed databases. All the algorithms are based on the global reduction of so-called
sufficient statistics, followed by a broadcast of the final result. A popular statistics concerning the goodness of a
clustering is, for example, the sum of the mean square error (MSE) of each data point from its own cluster center.

In [39] Xu, et al. discuss a parallel version of a very popular data mining clustering algorithm, the density-based
DBSCAN one. The target platform is a shared-nothing cluster of computers, which can be thought as a distributed
system with a more efficient interconnection network. The algorithm is based on adR∗ − tree, a distributed spatial
index structure. Every computer has its own local data, while the replicated index provides an efficient access to data.
The key idea is the exploitation of a master which is responsible for merging candidate clusters found by distinct
slaves.

Finally, in a recent work [14], besides presenting an overview of some data mining algorithms for peer-to-peer
environments, the authors also describe both exact and approximate decentralized algorithms for the problem of mon-
itoring and computing clusters in data residing at different nodes of a P2P network.

3 Stream mining algorithms

In recent applications data are modeled best not as persistent relations, but rather as transient data streams. Examples of
such applications include financial applications, network monitoring, security, telecommunications data management,
web applications, manufacturing, sensor networks, moving object trajectories and RFID tracing applications, and
many others.

The management of multiple and distributed streams, produced at different rates, arriving in an unpredictable and
unbounded way, appears to yield some fundamentally new research problems. Since in general such streams may
arrive in burst and are unbounded, due to real-time and memory constraints we cannot store them on a persistent
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memory, and it becomes mandatory to examine each incoming record once or a limited number of time. Moreover,
sampling is often the only option to face the above constraints.

Since approximate query answers often suffice, and this is particularly true in trend/pattern analyses, typical ap-
plication have to maintain in real time small synopses of the data streams. Such synopses must be built in order to
provide good-quality approximate answers.

Streams are naturally ordered, and tuples can be associated with logical or physical timestamps. Windows covering
part of timestamped stream tuples permit for only considering portions of stream data. For example,sliding windows
prevent stale data from influencing analysis and statistics. Such windows are also useful for approximation in face
of bounded memory. A useful way to discount for past tuples of the stream is also thefading windowmodel. For
example, by introducing a fading factorφ, we can reduce the influence on a given statistics, e.g., the support count of
an itemset by reducing the absolute support supplied to the itemset by an old block of past transactions.

A good work that surveys a lot of past studies on stream data management and stream (continuous) query process-
ing is [3]. Stream data mining is a relatively new research topic. The main focus of some important papers has been
on stream data classification (such as [17, 24, 29]) and stream clustering (such as [32, 21]).

In [17] Domingos and Hulten discuss VFDT (Very Fast Decision Tree learner), a new stream algorithm to build a
decision tree. It is able to build a tree using constant memory and constant time per example. It uses Hoeffding bounds
to select enough stream examples for choosing the right test attribute for each internal node of the tree. at any given
node. Indeed, only the first examples that arrive from the stream need are actually used to choose the split attribute at
the root. The following examples are passed through the induced portion of the tree, until they reach a leaf. If needed,
they will be used to select the right split attribute there, and so on recursively.

The classification system tries to learn a discrete function given a set of input and output examples. Unfortunately
VFDT makes the assumption that training data is a sample of the examples taken from a stationary distribution. If this
assumption is not valid, due two the change in the input distribution, we should observe a change in the target function
over time. This problem is known as concept drift. In [24], Hulten, Laurie and Domingos introduce a new stream
decisione tree learner, called CVFDT, which is able to cope with concept drifts. CVFDT grows an alternative subtree
each time the old one seems to be out-of-date, and replaces the old one when the new one becomes more accurate.

Law and Zaniolo [21] argue that the approach followed by VFDT and CVFDT is interesting from the theoretical
point of view, but it can be dif- ficult to apply in real stream environments, characterized by fast input rates and
unending data sets, because the significant time required for updating the decision tree. Moreover, due to the statistical
bounds, a large amount of samples is needed to build a classifier with reasonable accuracy. Their approach is different,
because they propose to build a lazy classifier from the stream, in particular a nearest neighbor (NN) one. While, in
general, this approach could be in principle able to solve the problem of the high arrival rate of the stream data, since no
explicit classifier must be learnt, it is important to prepare a suitable data structure for accelerating the nearest neighbor
lookup. Rather than using binary trees, which may become seriously unbalanced when new stream data arrive, they
propose an approach to NN classifiers that only provides approximate answers with error bound guarantees.

Guha,et al. [21] focus their attention on clustering data stream. In particular, they deal with a particular definition
of clustering, the k-Median objective, whose goal is to identify k centers so that the sum of distances from each point
to its nearest center is minimized. The algorithm is based on a facility location algorithm, which might produce more
than k centers. The facility location algorithm is however modified to produce exactly k clusters, thus solving the
k-Median problem. Finally, the stream algorithm exploits a simple divide-and-conquer core that achieves a constant-
factor approximation in small space. This is very important because a stream algorithm must be not only single pass,
but has also to use a limited amount of main memory.

The main algorithms [30, 25] to mine frequent itemsets from stream data mining are derived from those for discov-
ering frequent single items. Under particular circumstances, also the apparently simple job of extracting single items
may be a highly memory intensive problem [8]. Several relaxed versions of this problem exist, some interesting ones
were introduced in [8, 15, 28]. The techniques used for solving this family of problems can be classified into two large
categories: count-based techniques [31, 15, 28, 30] and sketch-based techniques [30, 8, 11, 12]. The first ones monitor
a limited set of potentially ”interesting” items, using a counter for each one of them. In this case an error arises when
an item is erroneously removed from the set, or inserted too late. The second family provides a frequency estimation
for every item by using a hash indexed vector of counters. In this case the risk of completely missing the occurrences
of an item is avoided, at the cost of looser guarantees on the computed frequencies.
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4 Grid platforms for building knowledge discovery systems

Whereas some high-performance parallel and distributed data mining systems have been proposed [27] - see also [6]
- there are few research projects attempting to implement and/or support knowledge discovery processes over com-
putational Grids. A main issue here is the integration of two main requirements: synthesizing useful and usable
knowledge from data, and performing complex large-scale computations leveraging the Grid infrastructure. Such in-
tegration must pass through a clear representation of the knowledge base used in order to translate moderately abstract
domain-specific queries into computations and data analysis operations able to answer such queries by operating on
the underlying systems [4].

Among them, the Knowledge Grid [7] is a framework for implementing knowledge discovery tasks in a wide
range of high performance distributed applications. The Knowledge Grid offers to users high-level abstractions and a
set of services by which is possible to integrate Grid resources to support all the phases of the knowledge discovery
process, as well as basic, related tasks like data management, data mining, and knowledge representation. Current
research activity on the Knowledge Grid is focused on designing and implementing its mechanisms following the
Service Oriented Architecture(SOA) model.

The following Section 4.1 shortly reviews the most significant Grid-oriented knowledge discovery systems.

4.1 Knowledge discovery on Grids

Berman [4], Johnston [26], and some of us [6] claimed that the development of knowledge Grids on top of computa-
tional Grids is the enabling condition for developing high-performance knowledge discovery processes and meeting
the challenges posed by the increasing demand of power and abstractness coming from complex Problem-Solving En-
vironments. The design of knowledge Grids can benefit from the layered Grid architecture, with lower levels providing
middleware support for higher level application-specific services.

In this section we review the most significant systems supporting knowledge discovery processes over distributed/Grid
infrastructures. The systems discussed here provide different approaches in running knowledge discovery processes on
Grids. We discuss them starting from general frameworks, such as the TeraGrid project, then outlining data-intensive
oriented systems, such as DataCutter and InfoGrid, and, finally, describing KDD systems such as Discovery Net and
GridMiner, and some significant data mining testbed experiences.

The TeraGrid project is building a powerful Grid infrastructure, calledDistributed TeraScale Facility(DTF), con-
necting four main sites in USA (the San Diego Supercomputer Center, the National Center for Supercomputing Ap-
plications, Caltech and Argonne National Laboratory). Recently, the NSF funded the integration into the DTF of the
TeraScale Computing System(TCS-1) at the Pittsburgh Supercomputer Center; the resulting Grid environment will
provide, besides tera-scale data storage, 21 TFLOPS of computational capacity1. Furthermore, the TeraGrid network
connections, whose bandwidth is in the order of tenths of Gbps, have been designed in such a way that all resources
appear as a single physical site. The connections have also been optimized in order to support peak requirements
rather than an average load, as it is natural in Grid environments. The TeraGrid adopts Grid software technologies and,
from this point of view, appears as avirtual systemin which each resource describes its own capabilities and behavior
throughService Specifications. The basic software components are calledGrid Services, and are organized onto three
distinct layers. TheBasic layer comprises authentication, resource allocation, data access and resource information
services; theCorelayer comprises services such as advanced data management, single job scheduling and monitoring;
theAdvancedlayer comprises superschedulers, resource discovery services, repositories etc. Finally,TeraGrid Appli-
cation Servicesare built using Grid Services. The definition of such services is still under discussion, but they should
comprise the support of on-demand/interactive applications, the support of GridFTP interface to data services, etc.

The most challenging application on the TeraGrid will be the synthesis of knowledge from very large scientific
data sets. The development of knowledge synthesis tools and services will enable the TeraGrid to operate as a knowl-
edge Grid. A first application is the establishment of the Biomedical Informatics Research Network to allow brain
researchers at geographically distributed advanced imaging centers to share data acquired from different subjects and
using different techniques. Such applications make a full use of a distributed data Grid with hundreds of terabytes
of data online, enabling the TeraGrid to be used as a knowledge Grid in the biomedical domain. The use of the
Knowledge Grid services can be potentially effective in these applications.

InfoGrid is a service-based data integration middleware engine designed to operate on Grids. Its main objective
is to provide information access and querying services to knowledge discovery applications [20]. The information

1http://www.teragrid.org
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integration approach of InfoGrid is not based on the classical idea of providing auniversalquery system: instead of
abstracting everything for users, it gives a personalized view of the resources for each particular application domain.
The assumption here is that users have enough knowledge and expertise to handle the absence oftransparency. In
InfoGrid the main entity is theWrapper; wrappers are distributed on a Grid and each node publishes a directory of
the wrappers it owns. A wrapper can wrap information sources and programs, or can be built by composing other
wrappers (Composite Wrapper). Each wrapper provides: (i) a set of query construction interfaces, that can be used to
query the underlying information sources in their native language; (ii ) a set of administration interfaces, that can be
used to configure its properties (access metadata, linkage metadata, configuration files). In summary, InfoGrid puts the
emphasis on delivering metadata describing resources and providing an extensible framework for composing queries.

DataCutter is another middleware infrastructure that aims at providing specific services for the support of multi-
dimensional range querying, data aggregation and user-defined filtering over large scientific data sets in shared dis-
tributed environments2. DataCutter has been developed in the context of theChaosproject at the University of
Maryland; it uses and extends features of theActive Data Repository(ADR), that is a set of tools for the optimization
of storage, retrieval, and processing of very large multi-dimensional data sets. In ADR, data processing is performed at
the site where data is stored, whereas in Grid environments this is naturally unfeasible, due to inherent data distribution
and resource sharing at servers that may lead to inefficiencies. To overcome this issue, in the DataCutter framework
an application is decomposed into a set of processes, calledfilters, that are able to perform a rich set of queries and
data transformation operations. Filters can execute anywhere but are intended to run on a machine close (in terms
of connectivity) to the storage server. DataCutter supports efficient indexing. In order to avoid the construction of a
huge single index that would result very costly to use and keep updated, the system adopts a multi-level hierarchical
indexing scheme, specifically targeted at the multi-dimensional data model adopted.

Differently from the two environments discussed above, the Datacentric Grid is a system directed at knowledge
discovery on Grids designed for mainly dealing with immovable data [37]. The system consists of four kinds of
entities. The nodes at which computations happen are calledData/Compute Servers(DCS). Besides a compute engine
and a data repository, each DCS comprises ametadata tree, that is a structure for maintaining relationships among raw
data sets and models extracted from them. Furthermore, extracted models become new data sets, potentially useful at
subsequent steps and/or for other applications.

The Grid Support Nodes(GSNs) maintain information about the whole Grid. Each GSN contains a directory
of DCSs with static and dynamic information about them (e.g., properties and usage), and an execution plan cache
containing recent plans along with their achieved performance. Since a computation in the Datacentric Grid is always
executed on a single node, execution plans are simple. However, they can start at different places in the model hierarchy
because, when they reach a node, they could find or not already computed models. TheUser Support Nodes(USNs)
carry out execution planning and maintain results. USNs are basically proxies for user interface nodes (calledUser
Access Points, UAPs). This is because user requests (i.e., task descriptions) and their results can be small in size, so in
principle UAPs could be simple devices not always online, and USNs could interact with the Datacentric Grid when
users are not connected.

An agent-based data mining framework, called ADaM, has been developed at the University of Alabama3. Ini-
tially, this framework was adopted for processing large data sets for geophysical phenomena. More recently, it has
been ported to the NASA’s Information Power Grid (IPG) environment, for the mining of satellite data [23]. In this
system, users specifywhatis to be mined (data sets names and locations),howandwhereto perform mining (sequence
of operations, required parameters and IPG processors to be used). Initially,thin agents are associated to the sequence
of mining operations; such agents acquire and combine the needed mining operations from repositories that can be
public or private, i.e., provided by mining users or private companies. Data is acquiredon-the-flyin order to minimize
storage requirements at the mining site. ADaM comprises a moderately rich set of interoperable operation modules,
comprisingdata readersandwriters for a variety of formats,preprocessing modules, e.g., for data subsetting, and
analysis modulesproviding data mining algorithms.

The InfoGrid system mentioned before has been designed as an application specific layer for constructing and
publishing knowledge discovery services. In particular, it is intended to be used in the Discovery Net system. Discov-
ery Net is a project of the Engineering and Physical Sciences Research Council, at the Imperial College [13] whose
main goal is to design, develop and implement an infrastructure to effectively support scientific knowledge discovery
processes from high-throughput informatics. In this context, a series of testbeds and demonstrations are being carried
out, for using the technology in the areas of life sciences, environmental modeling and geo-hazard prediction.

2http://www.cs.umd.edu/projects/hpsl/chaos/ResearchAreas/dc
3http://datamining.itsc.uah.edu/adam
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The building blocks in Discovery Net are the so-calledKnowledge Discovery Services(KDS), distinguished in
Computation ServicesandData Services. The former typically comprise algorithms, e.g., data preparation and data
mining, while the latter define relational tables (as queries) and other data sources. Both kinds of services are de-
scribed (and registered) by means ofAdapters, providing information such as input and output types, parameters,
location and/or platform/operating system constraints,factories(objects allowing to retrieve references to services
and to download them), keywords and a human-readable description. KDS are used to compose moderately complex
data-pipelined processes. The composition may be carried out by means of a GUI which provides access to a library
of services. The XML-based language used to describe processes is calledDiscovery Process Markup Language
(DPML). Each composed process can be deployed and published as a new process. Typically, process descriptions are
not bound to specific servers since the actual resources are later resolved by lookup servers (see below).

Discovery Net is based on an open architecture using common protocols and infrastructures such as the Globus
Toolkit. Servers are distinguished into (i) Knowledge Servers, allowing storage and retrieval of knowledge (meant
as raw data and knowledge models) and processes; (ii ) Resource Discovery Servers, providing a knowledge base
of service definitions and performing resource resolution; (iii ) Discovery Meta-Information Servers, used to store
information about theKnowledge Schema, i.e., the sets of features of known databases, their types, and how they can
be composed with each other.

The GridMiner project at the University of Vienna aims to cover the main aspects of knowledge discovery on
Grids. GridMiner is a model based on the OGSA framework [19], and embraces an open architecture in which a set of
services are defined for handling data distribution and heterogeneity, supporting different types of analysis strategies,
as well as tools and algorithms, and providing for OLAP support. Key components in GridMiner are the Data Access
service, the Data Mediation service, and the Data Mining service. Data Access implements the data access to databases
and data repositories; Data Mediation provides for a view of distributed data by logically integrating them into virtual
data sources (VDS) and allowing to send queries to them and combine and deliver back the results. The Data Mining
layer comprises a set of specific services useful to prepare and execute a data mining application, as well as present its
results. The system has not been yet implemented on a Grid; a preliminary fully centralized version of the system is
currently available.

GATES (Grid-based AdapTive Execution on Streams) is an OGSA based system that provides support for pro-
cessing of data streams in a Grid environment [1]. GATES aims to support the distributed analysis of data streams
arising from distributed sources (e.g., data from large scale experiments/simulations), providing automatic resource
discovery, and an interface for enabling self-adaptation to meet real-time constraints.

Finally, we outline here some interesting data mining testbeds developed at the National Center for Data Mining
(NCDM) at the University of Illinois at Chicago (UIC)4:

• The Terra Wide Data Mining Testbed(TWDM). TWDM is an infrastructure for the remote analysis, distributed
mining, and real time exploration of scientific, engineering, business, and other complex data. It consists of five
geographically distributed nodes linked by optical networks throughStarLight(an advanced optical infrastruc-
ture) in Chicago. These sites include StarLight itself, the Laboratory for Advanced Computing at UIC, SARA
in Amsterdam, and the Dalhousie University in Halifax. A central idea in TWDM is to keep generated predic-
tive models up-to-date with respect to newly available data, in order to achieve better predictions (as this is an
important aspect in manycritical domains, such as infectious disease tracking). TWDM is based onDataSpace,
another NCDM project for supporting real-time streaming data; in DataSpace theData Tranformation Markup
Language(DTML) is used to describe how to updateprofiles, i.e., aggregate data which are inputs of predictive
models, on the basis of newevents, i.e., new bits of information.

• The Terabyte Challenge Testbed.The Terabyte Challenge Testbed is an open, distributed testbed for DataSpace
tools, services, and protocols. It involves a number of organizations, including the University of Illinois at
Chicago, the University of Pennsylvania, the University of California at Davis and the Imperial College. The
testbed consists of ten sites distributed over three continents connected by high-performance links. Each site
provides a number of local clusters of workstations which are connected to form wide areameta-clustersmain-
tained by theNational Scalable Cluster Project. So far, meta-clusters have been used by applications in high
energy physics, computational chemistry, nonlinear simulation, bioinformatics, medical imaging, network traffic
analysis, digital libraries of video data, etc. Currently, the Terabyte Challenge Testbed consists of approximately
100 nodes and 2 terabytes of disk storage.

4http://www.ncdm.uic.edu/testbeds.htm.
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• The Global Discovery Network(GDN). The GDN is a collaboration between the Laboratory for Advanced
Computing of the National Center for Data Mining and the Discovery Net project. It will link the Discovery Net
to the Terra Wide Data Mining Testbed to create a combined global testbed with a critical mass of data.

Some of the systems discussed above support specific domains applications, others support a more general class of
problems. Moreover, some of such systems are mainly advanced interfaces for integrating, accessing, and elaborating
large datasets, whereas others provide more specific functionalities for the support of typical knowledge discovery
processes.

5 Conclusions

In this report we have addressed the main problems and discussed several proposals concerning knowledge extraction
from distributed and stream data sources. We plan to investigate these issues in the field of the extraction of frequent
patterns, like itemsets, sequences, and closed ones. We intend to define and evaluate a distributed framework for
DDM, based on the merging of partial results extracted from distributed sites, by using interpolation to replace missing
patterns and associated supports. We also plan to adapt and extend this framework to mine multiple and distributed
stream sources.

Moreover, in this report we have also addressed the issues in exploiting some recent distributed infrastructures
like the computational Grid, and surveyed some important proposals. In this regard, we plan to investigate how to
define and compose Grid services for implementing distributed knowledge discovery and data mining services on
SOA-Grids, i.e. the recent SOA-based Grid middlewares. In particular, we are interested in defining Grid services
for searching Grid resources, composing software and data elements, and manage the execution of the resulting data
mining application on a Grid.
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