European Research Network on Foundations, Software Infrastructures and Applications

lo ”'_ci—'af&‘:—- for |large scale distributed, GRID and Peer-to-Peer Technologies

A'Metwork of Excellence funded by the European Commission

Data integration and query reformalution in service-based
Grids: Architecture and Roadmap.

Carmela Comito, Domenico Talia
{ccomito, talia}@deis.unical.it
UNICAL
DEIS - University of Calabria
via P. Bucci 41 ¢, 87036, Rende, Italy

Anastasios Gounaris, Rizos Sakellariou
{gounaris, rizos}@cs.man.ac.uk
UoM
Department of Computer Science - University of Manchester
Oxford Road, Manchester M13 9PL, UK

(

. CoreGRID Technical Report
0reG-Rin Number TR-0013

——— September 6, 2005

Institute on Knowledge and Data Management

CoreGRID - Network of Excellence
URL: http://www.coregrid.net

CoreGRID is a Network of Excellence funded by the European Commission under the Sixth Framework Programme

Project no. FP6-004265

Data integration and query reformalution in service-based Grids:
Architecture and Roadmap.

Carmela Comito, Domenico Talia
{ccomito, talia}@deis.unical.it
UNICAL
DEIS - University of Calabria
via P. Bucci 41 ¢, 87036, Rende, Italy

Anastasios Gounaris, Rizos Sakellariou
{gounaris, rizos}@cs.man.ac.uk
UoM
Department of Computer Science - University of Manchester
Oxford Road, Manchester M13 9PL, UK

CoreGRID TR-0013
September 6, 2005

Abstract

This report firstly summarises the work thus far on the XMAP data integration algorithm and on middleware
with regard to Grid query processing services, secondly, proposes an architecture for data integration-enabled query
processing on the Grid, and finally, presents a roadmap for its implementation with a view to producing an extended
set of e-Services. These services will allow users to submit queries over a single database and receive the results from
multiple databases that are semantically correlated with the former one.

1 Introduction

The Grid offers new opportunities and raises new challenges in data management that arise from the large scale,
dynamic, autonomous, and distributed nature of data sources. A Grid can include related data resources maintained in
different syntaxes, managed by different software systems, and accessible through different protocols and interfaces.
Due to this diversity in data resources, one of the most demanding issue in managing data on Grids is reconciliation of
data heterogeneity[13]. Therefore, in order to provide facilities for addressing requests over multiple heterogeneous
data sources, it is necessary to provide data integration models and mechanisms.

Data integration is the flexible and managed federation, analysis, and processing of data from different distributed
sources. In particular, the rise in availability of web-based data sources has led new challenges in data integration
systems for obtaining decentralized, wide-scale sharing of data, preserving semantics. These new needs in data inte-
gration systems are also felt in Grid settings. In a Grid, a centralized structure for coordinating all the nodes may not
be efficient because it can become a bottleneck and, most of all, it does not benefit from the dynamic and distributed
nature of Grid resources.

The Grid community is devoting great attention toward the management of structured and semi-structured data
such as relational and XML data. Two significant examples of such efforts are the OGSA Data Access and Integration
(OGSA-DAI)[4] and the OGSA Distributed Query Processor (OGSA-DQP)[3] projects. However, till today only few

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

projects (e.g., [9, 7]) actually meet schema-integration issues necessary for establishing semantic connections among
heterogeneous data sources.

For these reasons, we propose the use of the XMAP framework for integrating heterogeneous data sources dis-
tributed over a Grid. By means of this framework, we aim at developing a decentralized network of semantically
related schemas that enables the formulation of distributed queries over heterogeneous data sources. We designed a
method to combine and query XML documents through a decentralized point-to-point mediation process among the
different data sources based on schema mappings. We offer a decentralized service-based architecture that exposes
this XML integration formalism as an e-Service. We refer to this architecture as the Grid Data Integration System
(GDIS). The infrastructure proposed exploits the middleware provided by OGSA-DQP and OGSA-DALI, building on
top of them schema-integration services.

1.1 Background

The goal of a data integration system is to combine heterogeneous data residing at different sites by providing a unified
view of this data. The two main approaches to data integration are federated database management systems (FDBMSs)
and traditional mediator/wrapper-based integration systems.

A federated database management system (FDBMS)[21] is a collection of cooperating but autonomous compo-
nent database systems (DBSs). The DBMS of a component DBS, or component DBMS, can be a centralized or
distributed DBMS or another FDBMS. The component DBMSs can differ in different aspects such as data models,
query languages, and transaction management capabilities.

Traditional data integration systems[19] are characterized by an architecture based on one or more mediated
schemas and a set of sources. The sources contain the real data, while every mediated schema provides a reconciled,
integrated, and virtual view of the underlying sources. Moreover, the system includes a set of source descriptions that
provide semantic mappings between the relations in the source schemas and the relations in the mediated schemas[20].

Data integration on Grids presents a twofold characterization:

1. data integration is a key issue for exploiting the availability of large, heterogeneous, distributed and highly
dynamic data volumes on Grids;

2. integration formalisms can benefit from an OGSA-based Grid infrastructure, since it facilitates dynamic dis-
covery, allocation, access, and use of both data sources and computational resources, as required to support
computationally demanding database operations such as query reformulation, compilation and evaluation.

Data integration on Grids has to deal with unpredictable, highly dynamic data volumes provided by unpredictable
membership of nodes that happen to be participating at any given time. So, traditional approaches to data integration,
such as FDBMS [21] and the use of mediator/wrapper middleware[20], are not suitable in Grid settings.

The federation approach is a rather rigid configuration where resources allocation is static and optimization cannot
take advantage of evolving circumstances in the execution environment. The design of mediator/wrapper integration
systems must be done globally and the coordination of mediators has been done by a central administrator which is
an obstacle to the exploitation of evolving characteristics of dynamic environments. As a consequence, data sources
cannot change often and significantly, otherwise they may violate the mappings to the mediated schema.

The rise in availability of web-based data sources has led to new challenges in data integration systems in order to
obtain decentralized, wide-scale sharing of semantically-related data. Recently, several works on data management in
peer-to-peer (P2P) systems are moving along this direction[5, 8, 15, 16, 17]. All these systems focus on an integration
approach not based on a global schema: each peer represents an autonomous information system, and data integration
is achieved by establishing mappings among the various peers.

To the best of our knowledge, there are only few works designed to provide schema-integration in Grids. The most
notable ones are Hyper[9] and GDMS[7]. Both systems are based on the same approach that we have used ourselves:
building data integration services by extending the reference implementation of OGSA-DAI. The Grid Data Mediation
Service (GDMS) uses a wrapper/mediator approach based on a global schema. GDMS presents heterogeneous, dis-
tributed data sources as one logical virtual data source in the form of an OGSA-DALI service. This work is essentially
different from ours as it uses a global schema. For its part, Hyper is a framework that integrates relational data in P2P
systems built on Grid infrastructures. As in other P2P integration systems, the integration is achieved without using
any hierarchical structure for establishing mappings among the autonomous peers. In that framework, the authors
use a simple relational language for expressing both the schemas and the mappings. By comparison, our integration

CoreGRID TR-0013 2

model follows as Hyper an approach not based on a hierarchical structure, however differently form Hyper it focuses
on XML data sources and is based on schema-mappings that associate paths in different schemas.

The remainder of the paper is organized as follows. Section 2 presents the XMAP integration framework; the
underlying integration model and the XMAP query reformulation algorithm are described. Section 3 illustrates the
deployment of the XMAP framework on a service-based Grid architecture. The OGSA-DAP and OGSA-DALI existing
query processing services are outlined in Section 4. Section 5 presents a simple example of applying the XMAP
algorithm to OGSA-DQP supported relational databases, whereas Section 6 deals with the implementation details and
roadmap and discusses how this report serves the purpose of the CoreGrid project and relates to other project activities.

2 A Decentralized XML Data Integration Framework

In this section, we describe a framework meant to integrate heterogeneous XML data sources distributed among nodes
of a Grid. The primary design goal of this framework is to develop a decentralized network of semantically related
schemas that enables the formulation of queries over heterogeneous, distributed data sources.

2.1 Integration Model

Our integration model is based on schema mappings to translate queries between different schemas. The goal of a
schema mapping is to capture structural as well as terminological correspondences between schemas.

As mentioned before, traditional centralized architecture of data integration systems is not suitable for highly
dynamic and distributed environments such as the Grid. Thus, we propose a decentralized approach inspired from[16]
where the mapping rules are established directly among source schemas without relying on a central mediator or a
hierarchy of mediators. In consequence, in our integration model, there is no global schema representing all data
sources in a unique data model but a collection of local schemas (the native schema of each data source). To integrate
a source in the system, one needs only to provide a set of mapping rules that describes the relationships between its
schema and the other schemas it is related to.

The specification of mappings is thus flexible and scalable: each source schema is directly connected to only a
small number of other schemas. However, it remains reachable from all other schemas that belong to its transitive
closure. In other words, the system supports two different kinds of mapping to connect schemas semantically: point-
to-point mappings and transitive mappings. In transitive mappings, data sources are related through one or more
“mediator schemas”.

‘We address structural heterogeneity among XML data sources by associating paths in different schemas. Mappings
are specified as path expressions that relate a specific element or attribute (together with its path) in the source schema
to related elements or attributes in the destination schema. The data integration model we propose is indeed based
on path-to-path mappings expressed in the XPath[10] query language, assuming XML Schema as the data model for
XML sources. Specifically, this means that a path in a source is described in terms of XPath expressions.

As a first step, we consider only a subset of the full XPath language. The expressions of such a fragment of XPath
are given by the following grammar:

g—n|.lqa/qla//alalq]

where ”n” is any label (node tests), ”.” denotes the “current node”, ”/” indicates the child axis (/) whereas //” the
descendant axis, and [] denotes a predicate.

A schema mapping is defined as a set of “formulas” that relate a pair of schemas. More precisely, we define a
mapping M over a source schema S as a set of mapping rules R = {RM R ... RM}. As we perform path-to-
path mappings, a mapping rule associates paths in different schemas. Specifically, a mapping rule is an expression of
the form:

RM : {Sg, Ps} —cm {Sp, P}, where:

RM s the label of the rule.

S is the source schema with respect to which the rules are established.

Pg is a path expression in the source schema.

Sp is the target schema with respect to which the semantic connections are established.

CoreGRID TR-0013 3

e Pp is a path expression in the destination schema (the cardinality of this element may be more than one).

e CM is the element denoting the cardinality of the mappings between the two schemas. Mappings are classified
as 1-1, 1-N, N-1, N-N according to the number of nodes (both elements and attributes) of the schemas involved
in the mapping relationship.

The mapping rules are specified in XML documents called XMAP documents. Each source schema in the frame-
work is associated to an XMAP document containing all the mapping rules related to it.

The structure of XMAP documents is conform to the schema shown in Figure 1. One can notice the presence of
a single sourceSchema element, and a set of Rule elements defining the mapping rules. Rule elements have a
complex structure which specifies the paths involved in the mappings and the cardinality constraints among them.

<schema targetNamespace="http://XMAP/XMAPDocument"
xmlns="http://www.w3.0rg/2001/XMLSchema" ?>
<element name="Mapping">
<complexType>
<sequence>
<element name="sourceSchema" type="string"
minOccurs="1" maxOccurs="1"/>
<element name="Rule" minOccurs="1">
<complexType>
<sequence>
<attribute name="Cardinality" type="string"
minOccurs="1" maxOccurs="1"/>
<element name="sourcePath" type="string" minOccurs="1"/>
<element name="destSchema" type="string"
minOccurs="1" maxOccurs="1"/>
<element name="destPath" type="string" minOccurs="1"/>
</sequence>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

Figure 1: XML schema for XMAP documents.

2.2 A Reformulation Algorithm for XPath Queries

In this section we present an algorithm to reformulate an XPath query on the basis of the mapping rules established for
the schema over which the query is formulated. In the following, we suppose that we have a set of XML data sources,
that each data source is compliant to an XML Schema and that, for each schema, an XMAP document containing the
mappings related to this schema is provided.

Our query processing approach exploits the semantic connections established in the system by performing the
query reformulation algorithm before executing the query, in order to gain further knowledge. This way, when a query
is posed over the schema of a source, the system will be able to use data from any source that is transitively connected
by semantic mappings. Indeed, it will reformulate the given query expanding and translating it into appropriate
queries for each semantically related source. Thus, the user can retrieve data from all the related sources in the system
by simply submitting a single XPath query.

The query reformulation algorithm uses as input an XPath query and the mappings, and it produces as output zero,
one or more reformulated queries. We describe now in details the logic of the algorithm. In this discussion, we use Q)
to denote the input XPath query, S the source schema over which @) is formulated, M the mappings in the system and
(R, the reformulated queries produced by the algorithm.

CoreGRID TR-0013 4

The algorithm can be decomposed in the following stages:

1. Identifying the path expressions in Q).
An XPath query can contain one or more predicates that produce different branching points in the tree pattern
representing the query. Each of these branches identifies a specific path in the XML data source. The paths
identified in the query are collected into a set P.

2. Looking for candidate paths in all source schemas related to S.

The goal of this stage is to find corresponding paths in all sources semantically related to .S. This means finding
the path expressions corresponding to every element P; in P, by using the mapping information specified in
the XMAP document provided with S. More precisely, for each P; of the query @, the algorithm looks for all
corresponding paths in the schemas transitively connected to .S through path P;. These paths POJ are called
candidate paths, and the schema Sj they belong to, candidate schema. In particular we define a candidate
element EY ; as a tuple (S5, {P7;}), where {P?;} is a set of paths over the schema S5. So, for each path
expression P; € P, zero, one or more candidate elements Ef ; are built with 0 < 57 < n (n is the number of
source schemas in the system). A candidate set £° is a set of candidate elements {£7, ... E;} (with B =
U, E7 ;). Thus, this stage returns as a result the set £°.

3. Pruning of candidate schemas.

The third stage of the algorithm checks for each candidate schema found in the previous stage whether it may
be used to obtain one or more reformulation of the query @. To this aim, the algorithm checks whether each
candidate schema has at least one candidate path for each path present in the query. Moreover, it needs to
make sure that none of these candidate paths has already been used to rewrite) in order to avoid considering
redundant paths. The schemas that meet both these conditions are the only ones that we will be considered to
obtain reformulated queries, we call them destination schemas. We define a destination element E ; as a tuple
(S5,{P7;}), where {P};} is a set of paths over the schema S7. So, for each path expression P; in P, zero,
one or more candidate elements E; ; are built where 0 < j < |E°|. A destination set £* is a set of destination
elements {E7, ... B} } (with EY = U E7 ;). Thus, this stage returns as a result the set £*.

4. Constructing reformulated queries.
In this stage, given the set £*, the algorithm produces one or more XPath queries over each schema in the set.
More precisely, for each destination schema 57 in £* the following steps are performed:

e Assessing cardinality constraints. If each path P; in P has a single correspondent path P;*; the schema S7,
all the mapping rules between S and S7 will be of kind 1-1 or N-1. Thus, the output of the reformulation
will be a single query expressed over the destination schema S7. At the opposite, if there exists (at least)
one path in P that has more than one destination path over the schema S7 (1-N mapping), there will be
more than one reformulated query over the schema S*. The number of reformulated queries depends

distinct path combinations for S]*, is equal to the product of the cardinality of each path P;, com =
|Pﬁj| X |P£j| X +ee X |P,;‘j|

o Checking Join conditions. Once the cardinality of the mapping has been established, and before actually
producing the query, one needs to check the join conditions between the paths P;;(1 < i < |P]) of the
destination schema S7. In the 1-1 and N-1 mapping cases, since there will be a smgle reformulated query,
it will not be possible to reformulate the query with respect to the schema S7 if there exist at least two
paths for which join conditions are not respected. Finally, in the 1-N mapping case, there will be as many
reformulated queries as there exist satisfied join conditions among the paths of each combination.

e Composing XPath Queries. Once the join conditions between the destination paths have been checked,
the actual production of one or more XPath queries is initiated. These queries are the product of the
reformulation of the query @ in the destination schema 5.

5. Recursive invocation of the algorithm.
The algorithm is recursively invoked over the reformulated queries in order to produce the queries corresponding
to every transitive mappings.

CoreGRID TR-0013 5

In Figure 2 is described an example of use of the XMAP algorithm. Here a query @ is formulated over the
schema S;. In the first step the algorithm identifies the paths P, and P» in () and produces as output the set P.
Next, exploiting the XMAP document associated to the schema 51, the algorithm finds two mapping rules connecting
S1 to Sy trough the paths P, and P». More precisely, one of these rules relates P1 to two paths in S, respectively
/Info/kind/Painter/School and /Info/Kind/Sculptor/Artefact. Similarly, the other mapping
rules relates P, to /Info/Kind/Painter/Painting/Title and /Info/Kind/Sculptor/artefact.
So, the second step of the algorithm produces as output a candidate set composed of the elements P;fj and the (can-
didate) schema S5. In the considered example as the schema S$ has correspondences for both paths P; and P, it is
identified as a destination schema (step 3), so it can be used to reformulate the query @. In particular, the algorithm
produces two reformulations of the query () over the schema Sy, respectively Qr, and Qr,.

In Figure 3 is shown the pseudo-code of the XMAP reformulation algorithm.

|Q:/Arti st[styl e="Cubisnt']/artefact/titl e|

QRlzl I nf o/ ki nd/ Pai nt er [School =" Cubi snf']/ Painting/ Title
e QR2 =/ I nf o/ ki nd/ Scul ptor[styl e="Cubisni']/artefact
title

L Z_
[Actist] styl e="cubi sni]
»

S S,
Artist Info . .
id code destination set
: _ =G _Z(_MAF_’> jLrst-nane | BT =1 nf of ki nd Pai nt er/ School , S,
1 ; : /I nf o/ ki nd/ Scul ptor/sStyle 1
' ' artefact ki nd ; '
3|Pz=/Artist/artefact/title|} [title Pai nt er | P; ,=/ I nf o/ ki nd/ Pai nter/ Pai nting/Title, |
- ' cat egory School /I nf o/ ki nd/ Scul ptor/artefact |
Pai nti ng
LTitle
Scul pt or
tartef act
Style

candi date set

| P°,=/ | nf o/ ki nd/ Pai nt er / School , S,
/I nfo/ ki nd/ Scul ptor/ Styl e i

P§2=/Info/ki nd/ Pai nter/Painting/Title,
: /I nf o/ ki nd/ Scul ptor/ art ef act 1

Figure 2: Example of use of the XMAP algorithm.

3 GDIS: A high-level architecture for data integration in Grids

In this section, we describe a decentralized service-based data integration architecture for Grid databases that we refer
to as Grid Data Integration System (GDIS)[12]. The main concern of such system is reconciliation of data source
heterogeneity among distributed databases.

3.1 GDIS Logical Model and Abstract Architecture

We designed the GDIS system as a set of Grid nodes that accomplish one or more of the typical tasks of a data
integration system. The main entities and associated tasks in GDIS are: (1) data providers supplying data source, (2)
mediators whose source schema transitively connects two sources , (3) clients formulating queries.

The GDIS system offers a wrapper/mediator-based approach to integrate data sources: it adopts a decentralized
mediator approach to handle semantic heterogeneity over data sources, whereas syntactic heterogeneity is hidden
behind ad-hoc wrappers. More precisely, the proposed framework is characterized by three core components: a

CoreGRID TR-0013 6

Algorithm QueryReformulation
Input: query @, schema S, mapping M (M is the XMAP of S)
Output: set of reformulated queries Q*

begin
P — ldentifyPath(Q);
for each path P; € P do
£° « FindCandidatePath(P;, M);
£* « PruningSchema(£®);
for each S7 € £* do
if (Mapping1-N(S, S;)) then
Q° — CombinePaths(E; ;);
for each candidate query Q¥ € Q° do
if (VerifyJoinCondition(Q®)) then
Q* « ConstructQuery(Q°);
Q"¢ «— QueryReformulation(Q*, SJ* XMAP(S}));
if (|Q"°°| > 0) then
o* — O* U Qree,

else
if (VerifyJoinCondition(E; ;)) then
Q* — ConstructQuery(Q°);
Q"¢ «— QueryReformulation(Q*, S;, XMAP(S;));
if (|Q7°°| > 0) then
o* — 0* U Qe
QF — QF UQ;
return Q*
end

Figure 3: Pseudo-code of the XMAP reformulation algorithm.

query reformulation engine, a wrapper module, and a distributed query processor. As a consequence of these fea-
tures, some nodes in the system supply appropriate services addressing the challenges characterizing the design of a
wrapper/mediator-based data integration system. Thus, we can further classify the nodes in the system on the basis
of the functionality they achieve with regard to the above mentioned features, obtaining in such way the following
categorization:

e processing nodes that supply distributed query processing capabilities aiming at compile, optimise, partition and
schedule distributed query execution plans over multiple execution nodes; every execution node is in charge of
a sub-query execution plan assigned to it by a processing node;

e data integration nodes that offer: (i) a set of data integration utilities allowing to establish mappings, and (ii) the
query reformulation algorithm introduced by the XMAP integration formalism.

e wrapper nodes allowing for access actual data sources.

It should be noted that any node can carry out all the mentioned services.

Figure 1 shows the abstract architecture of the GDIS system. All the kinds of nodes in the system and typical
interactions that take place among them are shown. As above mentioned, a node in the system can assume several
different roles on the basis of the reachable functionality. In the described scenario a client node CN, formulates a
query over the schema contributed by the mediator node MN and, then, it poses the query (interaction (1)) to the node
IN holding a reformulator engine. The reformulator performs the XMAP query reformulation algorithm that accepts
as input the query and the mappings relative to the schema over which the query has been formulated. (interaction (2)).
After the reformulated query has been produced, the node IN invokes (interaction (3)) the distributed query processor
(DQP) on the node PN. The DQP performs the so far produced reformulated query delegating and scheduling portions
of the query plan over multiple execution nodes (interaction (4)). Every execution node (EN), handling a partition of
the query execution plan assigned to it by the processing node, accesses actual data stored in the database. To this
aim each node EN (interaction (5)) uses the wrapper made available by the node WN that will access data held in
the database on node DN (interactions (6-7)) and return it (interaction (8)) to the node EN. After that, the sub-query
results begin to propagate across the execution nodes (interaction (9)) until reaching the node PN that collects them
into the query result and passes it to the querying node IN (interaction (10)). Finally, the node IN propagates the query
answer (interaction (11)) to the client (node CN). Note that for clarity reasons in the described scenario it is assumed

CoreGRID TR-0013 7

only one reformulation of the submitted query. Moreover, note that, the dotted arrow among the node DN and the
node MN means that there are semantic mappings among the schemas exported by the two nodes.

3.2 GDIS Architecture Implementation

We designed our data integration system as a service-based distributed architecture. So, the proposed architecture
is general enough to be feasibly adopted both in the two implementations of the Globus Toolkit, GT3 and GT4. At
present, the system is integrated with GT3 based on OGSA; minor modifications will be required to port the system to
the WSRF-based GT4. In particular, in the Globus Toolkit 4 Grid services will be replaced by WS-Resources, service
data by resource properties and Index Services by ServiceGroups.

Following the GT3 terminology, each node in GDIS exposes all its resources as Grid services except data resources
and data integration facility that are exposed as Grid Data Services (GDSs). In so doing, the GDIS system introduces
the OGS A-based Grid Data Integration (GDI) service that service that extends OGSA-DAI and OGSA-DQP portTypes
with additional functionality both to enable users to specify semantic mappings (in the form of XMAP documents)
among a set of data sources, and to execute the XMAP query rewriting algorithm.

Every GDI instance, other than introducing specific portTypes, can define some portTypes from OGSA-DAI and
OGSA-DQP. As a Grid service, GDI must define a GridService portType, and can define optional portTypes, such as
NotificationSink an NotificationSource. Furthermore, GDI implements the portTypes GDS and GDT from OGSA-DAI,
and the portType GDQ from OGSA-DQP. To these portTypes, it adds the following new ones:

o the Import Mappings (IM) portType, through which a client can import the mappings stored in the other GDI
services in the system. The imported mappings will be exposed by the GDI as SDEs;

o the Manual Mappings Composition (MMC) portType, through which a client manually builds schema mappings
stored in the form of an XMAP document as SDEs;

o the Query Reformulation Algorithm (QRA) portType, that performs the XMAP query reformulation algorithm
and receives as input a query, schema mappings and produces as output a reformulated query. The reformulated
query will be the input of the GDS portType offered by the OGSA-DQP GDQS service.

-~
. % Mediator

SCHEMAS

8
Wrapper

OGSA-DAI 5 OGSA-DQP

—)./ % —)/

GDOS

Figure 4: GDIS functional architecture.

CoreGRID TR-0013 8

Client Application Global Schema
{Union of local schemas)

—fﬂ%%&é;

‘__\—‘——_——/‘_/

OGSA-DOP Control flow

GDOS / Query

Execution
Data flow ! I Engine —
S GOES N
]
¥ I
GOES | | GO |
r 3

I_Lm:alS(hema
5 GDS 5 GDS 6 GDS

Data Access and Integration Framework (OGS A -DAT)

w

le

:
@1

Core Grid Middleware

Grid Service Infrastructure (OGSA F GT3)

!

| Web Application Servers (e.g. Tomceat - Axis) ‘

‘ 08 & Network Layer ‘

Computatienal Grid Resources

Figure 5: The architecture of OGSA-DQP.

4 Introduction to Grid query processing services

OGSA-DQP is an open source service-based Distributed Query Processor; as such, it supports the evaluation of queries
over collections of potentially remote data access and analysis services. OGSA-DQP uses Grid Data Services (GDSs)
provided by OGSA-DAI to hide data source heterogeneities and ensure consistent access to data and metadata. The
current version of OGSA-DQP, OGSA-DQP 2.0, uses Globus Toolkit 3.2 for grid service creation and management.
Thus OGSA-DQP builds upon an OGSA-DALI distribution that is based on the OGSI infrastructure. In addition, both
GT3.2 and OGSA-DALI require a web service container (e.g. Axis) and a web server (such as Apache Tomcat) below
them (see Figure 5). A forthcoming release of OGSA-DQP, due in fall of 2005, will support the WS-I and WSRF
platforms as well.

OGSA-DQP provides two additional types of services, Grid Distributed Query Services (GDQSs) and Grid Query
Evaluation Services (GQESs). The former are visible to end users through a GUI client, accept queries from them,
construct and optimise the corresponding query plans and coordinate the query execution. GQESs implement the
query engine, interact with other services (such as GDSs, ordinary Web Services and other instances of GQESs), and
are responsible for the execution of the query plans created by GDQSs.

5 Integrating the XMAP algorithm in service-based Grids: A walk-through
example

The XMAP algorithm can be used for data integration-enable query processing in OGSA-DQP
This example aims to show how the XMAP algorithm can be applied on top of the OGSA-DAI and OGSA-DQP

CoreGRID TR-0013 9

Site S1 Artist Artist Artefact

// \\ id | style| name artist_id title | category

id style name artefact

title category

code first_name Iast_nam/eki nd\
Painter Sculptor Painter Painting

/ \ / \ info_id| painter_id School | | painter_idtitle
School Painting Artfact style

title

Scul ptor
info_id Artfact | style

Figure 6: The example schemas.

services.

5.1 The database schemas

In the example, we will assume that the underlying databases, of which the XML representation of the schema is
processed by the XMAP algorithm, are, in fact, relational databases, like those supported by the current version of
OGSA-DQP.

We assume that there are two sites, each holding a separate, autonomous database that contains information about
artists and their works!. Figure 6 presents two self-explanatory views: one hierarchical (for native XML databases),
and one tabular (for object-relational DBMSs).

In OGSA-DQP, the table schemas are retrieved and exposed in the form of XML documents, as shown in Figure
7.

5.2 The XMAP mappings and the query reformulation

The XMAP mappings need to capture the semantic relationships between the data fields in different databases, includ-
ing the primary and foreign keys. This can be done in two ways, which are illustrated in Figures 8 and 9, respectively.
Both the ways seem to be feasible. However, the second one is slightly more comprehensible, and thus more desirable.

The actual query reformulation occurs exactly as described in [11]. Initially, the users submit XPath queries that re-
fer to a single physical database. E.g., /S1/Artist [style="Cubism’’] /name extracts the names of the artists
whose style is Cubism and their data is stored in the S7 database. Similarly, /S1/Artefact/title returns the titles
of the artifacts in the same database. When the XMAP algorithm is applied for the second query, two more XPath ex-
pressions will be created that refer to the S2 database: /S2/Painting/Titleand /S2/Sculptor/Artefact.
At the back-end, the following queries will be submitted to the underlying databases (in SQL-like format):

select title from Artefact;,

select title from Painting;, and

select Artefact from Sculptor;

Note that the mapping of simple XPath expressions to SQL/OQL is feasible [18].

I The example refers to another version of the example mentioned in the XMAP paper [11] and in Section 2.

CoreGRID TR-0013 10

<databaseSchema dbname="S1">
<table name="Artist">
<column name="id" />
<column name="style" />
<column name="name" />
<primaryKey>
<columnName>id</columnName>
</primaryKey>
</table>
<table name="Artefact">
<column name="artist_id" />
<column name="title" />
<column name="category" />
</table>
</databaseSchema>

<databaseSchema dbname="S2">
<table name="Info">
<column name="id" />
<column name="code" />
<column name="first_name" />
<column name="last_name" />
<column name="kind" />
<primaryKey>
<columnName>id</columnName>
</primaryKey>
</table>
<table name="Painter">
<column name="painter_id" />
<column name="info_id" />
<column name="school" />
<primaryKey>
<columnName>painter_id</columnName>
</primaryKey>
</table>
<table name="Painting">
<column name="painter_id" />
<column name="title" />
<primaryKey>
<columnName>title</columnName>
</primaryKey>
</table>
<table name="Sculptor">
<column name="info_id" />
<column name="artefact" />
<column name="style" />
</table>
</databaseSchema>

Figure 7: The XML representation of the schemas of the example databases.

CoreGRID TR-0013

i) databaseSchema [@dbname=S1]/table[@name=Artist]/column[@name=style] —->
databaseSchema [@dbname=S2] /table[@name=Painter]/column[@name=school],
databaseSchema[@dbname=S2]/table[@name=Sculptor]/column[@name=style]

ii) databaseSchema[@dbname=S1]/table[@name=Artefact]/column[@name=title] ->
databaseSchema [@dbname=S2] /table[@name=Painting]/column[@name=title],
databaseSchema [@dbname=S2] /table[@name=Sculptor]/column[@name=artefact]

iii) databaseSchema[@dbname=S1]/table[@name=Artist/column[@name=id —->
databaseSchema [@dbname=S2] /table [@name=Info/column [@name=1id]

iv) databaseSchema[@dbname=S1]/table[@name=Artefact]/column[@name=artist_id] ->
databaseSchema [@dbname=S2] /table [@name=Painter]/column[@name=info_id],
databaseSchema [@dbname=S2] /table[@name=Sculptor]/column[@name=info_id]

Figure 8: The XMAP mappings.

i) S1/Artist/style —-> S2/Painter/school, S2/Sculptor/style
ii) S1/Artefact/title -> S2/Painting/title, S2/Sculptor/artefact
iii) S1/Artist/id -> S2/Info/id

iv) Sl/Artefact/artist_id -> S2/Painter/info_id, S2/Sculptor/info_id

Figure 9: A simpler form of the XMAP mappings.

6 Implementation Roadmap

6.1 Service Interactions and System Design

The XMAP query reformulation algorithm is deployed as a stand-alone service, called Grid Data Integration service
(GDI). Figure 10 provides an overview of the service interactions involved in the incorporation of data integration
functionality in distributed query processing on the Grid. It focuses on the interactions that concern the GDI, and thus
it hides all the complexities that relate to (distributed) query submission and execution. As such, it complements the
service interactions between the OGSA-DAI and DQP services, which are described in detail in [2].

The following architectural assumptions are made. The GDI is deployed at each site participating in a dynamic
database federation and has a mechanism to load local mapping information, based on the interface described in
Section 3. Following the Globus Toolkit 3 [1] terminology, it implements additional port-types (see sect 3.2), among
which the Query Reformulation Algorithm(QRA) port-type, which accepts XPath expressions, applies the XMAP
algorithm to them, and returns the results. A database can join the system as in OGSA-DQP: registering itself in a
registry and informing the GDQS. The only difference is that, given the assumptions above, it should be associated
with both a GQES and a GDI.

Also, there is one GQES per site to evaluate (sub)queries, and at least one GDQS. As in classical OGSA-DQP
scenarios, the GDQS contains a view of the schemas of the participating data resources, and a list of the computational
resources that are available. The users interact only with this service from a client application that need not be exposed
as a service.

The interactions are as follows (see also Figure 10):

1. The client contacts the GDQS and requests a view of the schema for each database he/she is interested in.
2. Based on the retrieved schema, he/she composes an XPath query, which is sent to the GDQS.

3. The GDQS transforms, parses, optimises, schedules and compiles a query execution plan [22]. This process
entails the identification of the relevant sites, and consequently their local GOES and GDI. The resulting query
execution plan is sent to the corresponding GOES, which returns the results asynchronously, after contacting the
local database via a GDS.

CoreGRID TR-0013 12

@ perform(X Path)

GDS B

) GDQS |
@importSchemas :
ﬁ, Gbs | GQES

. perform(queryPlan’)

f@ GDIS apD

. XMAP(XPath’)

Figure 10: Data integration-enabled query processing on the Grid: service interactions.

4. The initial XPath expression is sent to the GDI that is co-located with the GQES of the previous step to perform
the XMAP algorithm.

5. As long as the call to the GDI returns at least one XPath expression that has not been considered yet in the same
session, the following steps are executed in an iterative manner.

(a) The results of the call to the GDI are collected by the GDQS. They contain a set of XPath expressions. The
GDQS filters out the ones that have already been processed in the current session.

(b) Each remaining XPath expression is processed as in Step 3 to collect results from other databases than the
one initially considered by the user.

(c) The same XPath expression is processed as in Step 4 to find additional correlated queries.

6.2 A Summary of the Extensions Envisaged to the Current Querying Services

The afore-mentioned architecture, apart from the development of the new GDI service, implies some extensions to the
current services and clients that are available from OGSA-DAI and OGSA-DQP. These extensions are, in our view,
reasonable and feasible, and thus make the overall proposal of practical interest. They are summarised below:

e The client should expose the schemas per database and rather than as a unified view.

e GDQS should be capable of accepting XPath queries, and of transforming these XPath queries to OQL before
parsing, compiling, optimising and scheduling them. Such a transformation falls in an active research area (e.g.,
[14, 6]), and will be realised as an additional component within the query compiler.

e GDQS should implement an additional XMAP-related activity that, given an XPath expression, finds the corre-
sponding GDI, and calls the XMAP on it. This returns a set of corresponding XPaths.

e The client should be capable of aggregating results stemming from multiple queries.

CoreGRID TR-0013 13

e GDQS should be capable of accepting requests that contain more than one (XPath) statement.

e Also, GDI should be capable of processing requests that clean, update and install mapping documents.

6.3 Looking Ahead

The proposed architecture will provide added value to the existing querying services, and increase the scope of the ap-
plications that may use them. It will result in a middleware infrastructure that can be enhanced with more functionality.
With a view to incorporating more features, the following stages of extensions have been identified:

Stage A: XPath is a simple language, and, as such, it cannot cover many of the common user requests. Allowing more
complex user queries to be submitted, and using the same XMAP algorithm that relies on paths, is a challenging
problem. It is expected that more extensive use of the knowledge about key/foreign-key relationships will be
required in order to reformulate more expressive queries (such as XQuery, SQL and OQL correctly).

Stage B: OGSA-DQP naturally provides the capability to submit queries over distributed sources in a manner that
is transparent to the user. In order to use this functionality in the future, some (non-extensive) changes in the
validity criteria of reformulated queries in the XMAP algorithm will be required.

Stage C: A more challenging problem is to allow initial queries to be distributed. This raises a new set of issues,
which include which site should hold the mappings, whether any more metadata at the GDQS-level is required,
and how non-duplicate results can be guaranteed.

Stage D: Finally, we plan to explore alternative architectures, and especially architectures in which the GDIs are may
not be co-located with GQESs, and can be shared between multiple sites.

6.4 Benefits for the CoreGRID activities

The massive amount of data sets that today is available from geographically distributed storage sources, is making
data integration as important as data mining and knowledge discovery for exploiting the value of such large and
distributed data repositories. Integration and correlation of large data sets demand significant advances in middleware
for integrating data from diverse distributed sources. So, data integration is a key element for data management and
knowledge discovery in Grids.

The primary objective of the CoreGRID Network of Excellence is to build solid methodological and technological
foundations for GRID computing services that will remain at the forefront of excellence. In particular, the objec-
tive of the WP2 is to provide a collaborative infrastructure for European research teams working on the distributed
storage management of GRIDs, the programming techniques and tools to support data intensive applications, and the
integration of data and computational GRIDs with information and knowledge GRIDs.

The issues described in the report meet the main research topics included in the WP2 Roadmap. More precisely,
with the research work presented in the report we address many of the objectives of both tasks 2.2 and 2.3.

Pertinent objectives of task 2.2 are organized along the following axis:

e Standardization and Integration : extending and standardizing the existing OGSA middleware for knowledge-
based GRID services;

e Data GRID management: implementing and extending OGSA-DAI and OGS A-DQP for supporting data-intensive
applications on GRIDs;

e Service-based data integration on GRIDs: scalable P2P models and architectures for distributed data integration.
Respectively, objectives of task 2.3 that are pertinent to our work are the following:
e Semantic Mapping: Representation of relationships between different GRID entities and resources;

o Intelligent queries: Query mechanism and intelligent agents for query formation.

CoreGRID TR-0013 14

References

[1] The Globus toolkit, http://www.globus.org.

[2] M. Nedim Alpdemir, A. Mukherjee, Norman W. Paton, Paul Watson, Alvaro A. A. Fernandes, Anastasios
Gounaris, and Jim Smith. Service-based distributed querying on the grid. In Maria E. Orlowska, Sanjiva
Weerawarana, Mike P. Papazoglou, and Jian Yang, editors, Service-Oriented Computing - ICSOC 2003, First
International Conference, Trento, Italy, December 15-18, 2003, Proceedings, pages 467-482. Springer, 2003.

[3] M. Nedim Alpdemir, Arijit Mukherjee, Anastasios Gounaris, Norman W. Paton, Paul Watson, Alvaro A. A.
Fernandes, and Desmond J. Fitzgerald. OGSA-DQP: A service for distributed querying on the grid. In Advances
in Database Technology - EDBT 2004, 9th International Conference on Extending Database Technology, pages
858-861, March 2004.

[4] Mario Antonioletti and et al. OGSA-DAI: Two years on. In Global Grid Forum 10 — Data Area Workshop,
March 2004.

[5] Philip A. Bernstein, Fausto Giunchiglia, Anastasios Kementsietsidis, John Mylopoulos, Luciano Serafini, and
Ilya Zaihrayeu. Data management for peer-to-peer computing : A vision. In Proceedings of the 5th International
Workshop on the Web and Databases (WebDB 2002), pages 89-94, June 2002.

[6] Kevin S. Beyer, Roberta Cochrane, Vanja Josifovski, Jim Kleewein, George Lapis, Guy M. Lohman, Bob Lyle,
Fatma Ozcan, Hamid Pirahesh, Norman Seemann, Tuong C. Truong, Bert Van der Linden, Brian Vickery, and
Chun Zhang. System rx: One part relational, one part xml. In SIGMOD Conference 2005, pages 347-358, 2005.

[7] P. Brezany, A. Woehrer, and A. M. Tjoa. Novel mediator architectures for grid information systems. Journal for
Future Generation Computer Systems - Grid Computing: Theory, Methods and Applications., 21(1):107-114,
2005.

[8] Diego Calvanese, Elio Damaggio, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. Semantic
data integration in P2P systems. In Proceedings of the First International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DBISP2P), pages 77-90, September 2003.

[9] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, Riccardo Rosati, and Guido Vetere. Hyper: A
framework for peer-to-peer data integration on grids. In Proc. of the Int. Conference on Semantics of a Networked
World: Semantics for Grid Databases (ICSNW 2004), volume 3226 of Lecture Notes in Computer Science, pages
144-157, 2004.

[10] James Clark and Steve DeRose. XML path language (XPath) version 1.0. W3C Recommendation, November
1999. http://www.w3.0rg/TR/xpath.

[11] C. Comito and D. Talia. Xml data integration in ogsa grids. In st Int. Workshop on Data Management in Grids
(to appear), 2005.

[12] Carmela Comito and Domenico Talia. GDIS: A service-based architecture for data integration on grids. In
Proceedings of the Workshop on Grid Computing and Its Application to Data Analysis, pages 88—98, October
2004.

[13] Karl Czajkowski and et al. The WS-resource framework version 1.0. The Globus Alliance, Draft, March 2004.
http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[14] Wenfei Fan, Jeffrey Xu Yu, Hongjun Lu, and Jianhua Lu. Query translation from xpath to sql in the presence of
recursive dtds. In VLDB Conference 2005, 2005.

[15] Enrico Franconi, Gabriel M. Kuper, Andrei Lopatenko, and Luciano Serafini. A robust logical and computa-
tional characterisation of peer-to-peer database systems. In Proceedings of the First International Workshop on
Databases, Information Systems, and Peer-to-Peer Computing (DBISP2P), pages 64-76, September 2003.

CoreGRID TR-0013 15

[16] Alon Y. Halevy, Dan Suciu, Igor Tatarinov, and Zachary G. Ives. Schema mediation in peer data management
systems. In Proceedings of the 19th International Conference on Data Engineering, pages 505-516, March
2003.

[17] Anastasios Kementsietsidis, Marcelo Arenas, and Renée J. Miller. Mapping data in peer-to-peer systems: Seman-
tics and algorithmic issues. In Proceedings of the 2003 ACM SIGMOD International Conference on Management
of Data, pages 325-336, June 2003.

[18] George Lapis. Xml and relational storage - are they mutually exclusive? available at
http://www.idealliance.org/proceedings/xtechO5/papers/02-05-01/ (accessed in july 2005).

[19] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), pages 233-246, June 2002.

[20] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous information sources using
source descriptions. In Proceedings of 22th International Conference on Very Large Data Bases (VLDB’96),
pages 251-262, September 1996.

[21] Amit P. Sheth and James A. Larson. Federated database systems for managing distributed, heterogeneous, and
autonomous databases. ACM Computing Surveys, 22(3):183-236, 1990.

[22] Jim Smith, Anastasios Gounaris, Paul Watson, Norman W. Paton, Alvaro A. A. Fernandes, and Rizos Sakellariou.
Distributed query processing on the grid. In Manish Parashar, editor, Grid Computing - GRID 2002, Third
International Workshop, Baltimore, MD, USA, November 18, 2002, Proceedings, pages 279-290. Springer, 2002.

CoreGRID TR-0013 16

