	[image: image5.jpg]4. Run: Task -Resource

Seheduier

Scheduler Core
Administrator AP|

5. Send Result o Ntify Fault

0. Deploy and Manage

3. Get : Task?Resource

1. Submit: Task

5.2 Release Resource

\

Manitoring AP

Infrastructure

2. Get Resource for Task Nimeoer

	[image: image2.jpg]Sea® (o GRED

	[image: image3.png]H LR[S

Generic Task Scheduler

By: Wasseim Al Zouabi

CoreGRID Exchange Report
ProActive &SEGL Projects

Supervised by:

Prof. Denis Caromel / INRIA-Sophia Antipolis Dr. Natalia Currle-Linde / HLRS-Stuttgart
Preface

This report is a short summary of activities performed at team OASIS of INRIA Sophia Antipolis, France as part of an exchange program with HLRS Stuttgart, Germany from the beginning of October 2006 till the end of March 2007.

Background

SEGL is a problem solving environment which allows end-user programming of complex, computation-intensive simulation and modelling experiments for science and engineering. SEGL is a GRID aware application enabling the automated creation, start and monitoring of complex experiments and supporting its effective execution on the GRID. The user of SEGL does not need to have knowledge of a specific programming language and knowledge about the GRID structure. SEGL allows the description of complex experiments using a simple graphical language. SEGL is a tool for generating parameter sets automatically, issuing jobs in the Grid environment, controlling the successful operation and termination of these jobs, collecting results, and generating new parameter sets based on previous results in order to approach a functional optimum.
The main problem facing SEGL is the deployment aspect on parallel machines. SEGL is an application layer software. Since interaction with the GRIDs is a lower level functionality, a middleware is needed to facilitate the interaction between SEGL and the GRIDs. Proactive was chosen to be the middle ware
ProActive is a GRID middleware (a Java library with Open Source code under LGPL license) for parallel, distributed, and concurrent computing, also featuring mobility and security in a uniform framework. With a reduced set of simple primitives, ProActive provides a comprehensive API to simplify the programming of Grid Computing applications: distributed on Local Area Network (LAN), on clusters of workstations, or on Internet Grids. ProActive uses the concept of active objects which are remotely accessible objects. Each active object has a thread that serves asynchronous requests
.

ProActive despite being powerful, lacks dynamic assignment of workstations (or nodes) to tasks, which created the need to design and implement a dynamic task scheduler which would be a part of the proactive library as well as provide an easier way for SEGL to schedule its task.

Initial Work

Upon arrival in INRIA time was spent first to learn proactive then to try and modify the available JOB scheduler, however it lacked many features to make it usable for SEGL or as a task Scheduler in general, so a new scheduler was suggested with emphasis on Simplicity, modularity, user friendliness and extendibility. The Scheduler was redesigned and sometimes re-implemented several times, before the final decision was set on the following architecture.

Architecture

A task is any java object that implements the ProActive Task interface, which currently has only a function Object run() that takes no arguments and returns an object. This function is the main entry to the task which is more like a java thread i.e. it is the entry point to the task.

The main part of the scheduler is the core which is a black box that goes through different stages in which it schedules tasks, makes sure they are still active, cleans up and serves general requests. The core communicates to the user through a front-end that consists of a set APIs for user interaction, administration and monitoring of tasks. The order in which the tasks are executed is determined by a policy, while the resources are managed by an infrastructure manager. The figure below shows the architecture of the scheduler and a typical communication between the scheduler components in order to schedule a task:

[image: image4]
0-The Infrastructure manager deploys & manages resources:
The infrastructure manager is not part of the scheduler. The scheduler can interact with any infrastructure manager as long as it implements a scheduler. The minimum required from an infrastructure manager is the ability to provide the scheduler with resources (nodes) so the scheduler can deploy the task on such nodes, and it must be capable of freeing the nodes once the scheduler is done with them. The Scheduler does not know where the nodes are, it just gets their addresses from the infrastructure manager, which keeps track of all the nodes assigned to it dynamically or statically. A simple implementation of the infrastructure manager was provided in order to complete the project and the testing.
1-Submit Task:
The user in their code submits a task through the UserAPI, creates an internal representation of the UserTask and forwards it to core. The core sets some parameters and then sends the task to the policy in order to be queued. As a result of the submission, the user receives a result object which is a normal java class that handles exceptions, and also provides blocking and non-blocking mechanism to get the execution results.

2- Get Resource for task:
In other words it is creating a tuple <task, resource> and it is handled by the policy. The scheduler provides a default policy that uses a first in first out queue (FIFO-policy). The policy gets the address of the resources from the infrastructure manager and creates an executer on the node which will be executing the user task.

The implemented Policy is a passive general FIFO policy, this means that: creating the tuples and looking for the resources is triggered when the scheduler demands such tuples (in step 3). It also means that the policy doesn’t differentiate between the kinds of resources, and finally the policy creates such tuples in a FIFO order i.e. the first task getting into the policy will be the first one to be matched.

An interface has been provided in case another policy was needed. Since all the scheduler needs is the <task, resource> tuple, any policy that implements the interface can be used. This means that the tasks can be served in any required order for e.g. by complexity or space requirements, or by priority. The policy can also be specific in its request when it comes to the nodes i.e. it can look for a node with a specific operating system or specific processing power. The policy can be even active in creating the tuple where the node retrieval is done automatically instead of being triggered by scheduler in step 3.

3-Get Resource-Task:
In this stage, the scheduler gets the <task, resource> tuple. The core has been designed so that this can be done either in the push mode or the pull mode. The core is currently set to operate in the pull mode, which means that when the core is in the scheduling phase, it asks the policy to provide it with the <task, resource> tuple.

The design has also taken into consideration that further development might result in making the core to operate in push mode, which means that the policy will push the ready tuples to the scheduler when they are ready. This means that the tasks will be scheduled faster because they don’t have to wait for the scheduler to be ready, but rather they start as soon as they are ready.This, however, puts an extra burden on the scheduler where it has an extra stimuli to respond to.

4-Run Task on Resource:
This is the deployment phase. The core takes the <task, resource> tuples and sets the status of task and some statistical parameters. Then it deploys the task on the target resource, starts the execution and adds to a vector of running tasks to keep track of it.

The scheduler makes sure the running tasks are alive by pinging them every TIMEOUT.

In case of failure or a scheduler related exception, the scheduler sends the task back to the policy for re-scheduling. The scheduler tells the policy that this task has failed, however it is the policy that decides when to give it to the scheduler for execution the next time.

5-Send result or notify fault:

Every TIMEOUT, the scheduler checks the running task for results. If the result is back or if some user exception was thrown, the task is moved to a finished tasks vector. When the scheduler has client-requests asking
for the results, it keeps them on hold until it arrives in the finished vector, then its request is served and the result is sent back to the user through the UserAPI. If no such request exists, the result is kept until retrieved by the user. At the user side the result object will return the result if execution was successful or throw the resulting user exception if it has occurred.

5.2- Release Resource:

After execution is finished, the scheduler sends the resource back to the infrastructure manager for recycling. After the result is retrieved, it is deleted from the scheduler and the policy is signaled that the task is done.

Important APIs

The scheduler provides two interfaces, administrative and user oriented. The monitoring API was integrated into both in order to make the scheduler secure and easy.

The UserAPI is mainly used by the UserResult object to interact with the scheduler. It would only be needed if this object was lost. On the other hand, the AdminAPI is used to develop tools to interact with the scheduler, and would rarely be used programmatically for other purposes.

Hereafter are some important APIs and their description. For a more complete set and a more thorough description please refer to the documentation.

UserAPI

Static SchedulerUserAPI connectTo(URL)

Connects to the URL of the scheduler and returns a reference to its UserAPI.
BooleanWrapper del (taskID,userName)

Deletes a specific task that belongs to the user.
UserResult submit (task, username)

Submits a task under a specific username and get a UserResult object back.
Vector<UserResult> submit (Vector<task>, username)
Submits a vector of tasks under a specific username and get a vector of UserResult objects back.
BooleanWrapper isFinished (TaskID)

Checks if the specified task is finished and returns immediately.
Status stat (taskID)

Checks the status of the specified task

AdminAPI

Static AdminScheduler connectTo(URL)
Connects to the URL of the scheduler and returns a reference to its AdminAPI.

void flushqueue()

Deletes all queued tasks in the policy.

Vector<Info>info_all()
Returns a vector containing all statistical information about the tasks .
void killAllRunning()

Stops all running tasks.

void shutdown(immediate)

Shuts down the scheduler and terminates.
BooleanWrapper start()

Enables the UserAPI so users can interact with the scheduler.

BooleanWrapper stop()

Disables the UserAPI so users cannot interact with the scheduler.

Sample Program

Hereafter is a sample program that shows the minimum required to submit a task and gets its result, it is called as follows: HelloWorld {scheduler_address}
public class HelloWorld implements ProActiveTask

{

public static void main(String[] args)

{

SchedulerUserAPI scheduler = SchedulerUserAPI.connectTo(args[0]);

UserResult result = scheduler.submit(new HelloWorld(), "walzouab");

if (!result.isFinished())

System.out.println(“Execution not finished”);

System.out.println(result.getResult());

System.exit(0);

}

public Object run()

{

return ("Hello World");

}

}

Any task has to implement ProActiveTask interface as seen in the first line which also implies overriding public Object run() which is the entry point to the task. In the main method, the first thing is connecting to API and acquiring a reference to the UserAPI. Then API method submit is called and the username and the task are passed as arguments. This method returns a UserResult Object which can be used to either check the status using boolean isFinished() or ask for the result and block on it if not yet available using Object getResult().

Testing

The testing was performed using the simple infrastructure manager provided and the FIFO policy. Using the Peer-to-Peer infrastructure by proactive, more than 35 nodes used by the scheduler to deploy simple tasks. More than 5000 tasks were added to the scheduler without its performance being affected. Also a live demo was given to OASIS team members and other teams at INRIA.

Future Work

The Task Scheduler is an ongoing project in the OASIS team. The Scheduler was designed as modular and as simple as possible to make room for future improvements.

Some suggested improvements are:
A-Node Caching

The first mature design of the architecture differed by having a simpler role for the policy. The core performed step 2, i.e. acquiring the resource, while the policy was only supposed to decide on the following task to be executed. Since the core totally controls the resources, a node pool was added where nodes would be kept in the core after being used instead of being sent back to the infrastructure manager, this makes the scheduler a lot more efficient since we save on calls to the infrastructure manager and we save on creating the active executer.

This design however was refined to the final design above because the infrastructure manager is a separate entity that can serve multiple schedulers and applications, which means that in such case the scheduler would be resource hungry and violate the fair usage of resources.

Another important reason for refining the initial design is that the scheduler is supposed to be general purpose scheduler which means that it could specify certain kinds of resources to be acquired, which is something that the policy should handle if the core is to be kept untouched by the user.

However, since a node cache still improves the scheduler performance, it was decided to keep it in mind as an improvement to the final design. It can be added as an intermediate component between the infrastructure manager and the scheduler so the policy takes nodes from the cache and the scheduler returns nodes there, and if they aren’t used for a while they are returned back to the infra structure manager.

B-IC2D plugin

The Scheduler provides an administrative API and a monitoring API that helps interact with the scheduler. Currently, a command-line based interface for administering and monitoring is implemented.

An IC2D plugin would be a graphical way of controlling the scheduler. It would still use the provided APIs, which means no change to the scheduler as a whole which means that the integration with IC2D would be done using the APIs and the emphasis would be on the graphical part.

C- Task sets

The Scheduler currently accepts groups of tasks but it still treats them individually. An improvement would be submitting a group and treating it as a task or a Job which implies some kind of dependency among the tasks. This could be done by writing a policy that accommodates for such tasks. The core would most likely be unaffected.

D-Advanced Security

Currently security is implemented by using usernames and by totally separating user and admin APIs. It is suggested to have password based identification. In addition to that, security should be implemented in the core to prevent reflection to make sure that interaction can only be done through the secure APIs.

E-Native Tasks

This requires additions to the ProActiveTask interface in order to identify such tasks, and changes to the active executer so it can accommodate them.

Conclusion

The scheduler is a powerful tool that has a lot of potential as a proactive component. Its ability to provide dynamic deployment is essential to many applications such as SEGL. Although there are some future work and improvements to be done, it has already reached a near mature stage, and has been used in different projects. It can be used in SEGL as it satisfies SEGL’s requirements regarding task deployment. The scheduler will be the link between SEGL and the GRID, which means that this project has established a link between SEGL and ProActive under the CoreGRID project and opened new horizons for both projects.

Acknowledgments
First of all, I would like to thank Professor Denis Caromel and Mrs. Natalia Currle-Linde for offering me this opportunity, and for being very generous with ideas and support. I would also like to thank my supervisors during my stay at INRIA Mr. Mario Lyton and Mr. Alexandre Di-Costanzo for their support, their patience and dedication. I would also like to thank Mrs. Céline Bitoune for her help in the formalities, and finally I would like to thank the teams of both HLRS and INRIA for creating a very friendly environment where I was able to both contribute and learn a lot at the same time.

References

SEGL:

· http://www.hlrs.de/people/linde/SEGL/
· Natalia Currle-Linde, Uwe Kuester , Michael M. Resch , Benedetto Risio , 'Science Experimental Grid Laboratory (SEGL) Dynamical Parameter Study in Distributed Systems ', accepted for publication ParCo 2005 - Parallel Computing, Malaga, Spain, September 13-16, 2005.

· Natalia Currle-Linde, Panagiotis Adamidis , Michael M. Resch , 'A Tool for Complex Parameter Sturdies in Grid Environments: SGML-Lab ', The 2nd Russian-German Advanced Research Workshop on Computational Science and High Performance Computing, Stuttgart, Germany March 14 - 16, 2005

· Natalia Currle-Linde, Fabian Bös, Peggy Lindner , Jurgen Pleiss, Michael M. Resch , 'A Management System for Complex Parameter Studies and Experiments in Grid Computing',accepted for publication PDCS 2004 - International Conference on Parallel and Distributed Computing and Systems', MIT Cambridge, MA, 2004.
ProActive:

· http://ProActive.ObjectWeb.org
· Programming, Composing, Deploying for the Grid

· Baude F., Baduel L., Caromel D., Contes A., Huet F., Morel M. and Quilici R.,
in "GRID COMPUTING: Software Environments and Tools", Jose C. Cunha and Omer F. Rana (Eds), Springer Verlag, January 2006.

· Efficient, Flexible and Typed Group Communications for Java
Laurent Baduel, Francoise Baude, Denis Caromel
Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle, Washington, November 3-5, 2002

· Efficient, Flexible and Typed Group Communications for Java
Laurent Baduel, Francoise Baude, Denis Caromel
Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle, Washington, November 3-5, 2002

· From Distributed Objects to Hierarchical Grid Components
Francoise Baude and Denis Caromel and Matthieu Morel
International Symposium on Distributed Objects and Applications (DOA), Catania, Sicily, Italy, 3-7 November 2003

�incomprehensible, please rephrase the sentence

� incomprehensible, please rephrase the sentence

[image: image1.png]

