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Abstract

Data Grids provide transparent access to heterogeneous and autonomous data resources. The main contribution of
this paper is the presentation of a data sharing system that (i) is tailored to data grids, (ii) supports well established and
widely spread relational DBMSs, and (iii) adopts a hybrid architecture by relying on a peer model for query reformu-
lation for retrieving semantically equivalent expressions, and on a wrapper-mediator integration model for accessing
and querying distributed data sources. The system builds upon the infrastructure provided by the OGSA-DQP dis-
tributed query processor and the XMAP query reformulation algorithm. The paper discusses the implementation
methodology, and also presents empirical evaluation results.

1 Introduction
The Grid has emerged as a promising infrastructure for the coordinated use and sharing of distributed resources in a
dynamic manner [12], enabling the temporary pooling of resources to solve specific problems [13]. It does not refer
only to resources such as CPU power, storage facilities and memory, but also to data sources; integrating, accessing
and thus sharing multiple data sources is deemed as a key point for realizing the Grid vision and bridging the gap
between that vision and the current state-of-the-art [13]. A Data Grid can include and provide transparent access to
semantically related data resources that are maintained in different syntaxes, managed by different software systems,
and are accessible through different protocols and interfaces. Due to this diversity in data resources, one of the most
demanding issues in managing and sharing data on Grids is reconciliation of data heterogeneity.

Data Grids that rely on the coordinated sharing of and interaction across multiple autonomous database manage-
ment systems play a key role not only in scientific initiatives but in many industrial scenarios as well; this fact has led
to the production of vendor systems, such as Oracle10g and IBM DB2. At the level of Grid middleware infrastructure,
two notable (and correlated) examples are the OGSA Data Access and Integration (OGSA-DAI) and the OGSA Dis-
tributed Query Processor (OGSA-DQP)1 [4, 3] projects. These projects have moved toward a service-oriented archi-
tecture quite early in their lifecycle. OGSA-DAI exposes database management systems (including Oracle, MySQL,

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).

1OGSA-DAI/DQP are publicly available in open source form from www.ogsadai.org.uk.
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SQLServer, DB2, and so on) in a uniform way, whereas OGSA-DQP provides distributed query processing function-
alities on top of OGSA-DAI, presenting the multiple databases as a single one. As such, OGSA-DQP can combine and
integrate data from multiple data sources. To enhance performance, it employs parallel and adaptive query execution
techniques [14]; nevertheless the semantic interpretation of the data rests with the user, and furthermore, OGSA-DQP
does not address any schema integration requirements. Hence, to a significant extent, the integration facilities provided
by OGSA-DAI and DQP are inadequate to meet the requirements of data grid real cases.

Data integration, in its own right, is one of the most persistent problems that the database and information manage-
ment community has to deal with. Efficient techniques have been developed for and approaches have been devised to
schema mediation languages, query answering algorithms, optimisation strategies, query execution policies, industrial
development, and so on [17]. However, effective techniques for the generation and handling of semantic mappings
are still in their infancy. The need for semantic correlation of data sources is particularly felt in Grid settings. To date,
only few projects (e.g., [7, 6]) actually meet the schema-integration requirements that are necessary for establishing
semantic connections among heterogeneous data sources. To this end, the use of the XMAP query reformulation algo-
rithm for integrating heterogeneous data sources distributed over a Grid has been proposed [8]. Its aim is to develop a
decentralized network of semantically related schemas, so that the formulation of semantically equivalent distributed
queries over heterogeneous data sources is enabled. XMAP employs a decentralized point-to-point mediation ap-
proach to connect different data sources based on schema mappings. For instance, if the user submits a query for
authors of scientific papers of a certain kind to a certain database containing information about scientific publications,
XMAP can return equivalent queries referring to similar databases, provided that the semantic mappings have been
defined.

A comprehensive data sharing tool needs to include both distributed query processing and query reformulation
functionality. Thus far, data sharing tools in distributed environments tend to build upon non-database management
systems (DBMSs) or immature decentralized models, such as peer databases [18]. The main novelty of the work
described in this paper is the presentation of a data sharing tool that (i) is tailored to data grids, (ii) supports well-
established and widely spread relational DBMSs, and (iii) adopts a hybrid architecture by relying on a peer model for
query reformulation for retrieving semantically equivalent expressions, and on a wrapper-mediator integration model
for accessing and querying distributed data sources. Since the functionality offered by OGSA-DQP and XMAP is
complementary, and provides an efficient basis on top of which comprehensive, Grid-enabled data sharing tools can
be built, we discuss the design and implementation of a system combining the two aforementioned artefacts, along
with their extended functionality. The result of our work is a unifying service-oriented infrastructure for distributed
query processing and query reformulation driven by semantic connections, with a view to providing more complete
access and integration services for data grids. An important feature is that, although the system incorporates OGSA-
DQP and XMAP, the model it conforms to is generic, and enables the usage of any query reformulation or distributed
query processing subsystem.

The prototype that has been developed realizes the Grid vision with regards to data management in two orthogonal
ways. Firstly, it enables both query reformulation and distributed query processing across heterogeneous data sources
through extensions to the original work of XMAP and OGSA-DQP, respectively. Second, it constitutes an example
of how independent systems that seem incompatible at first glance, exposed as services, can work together. OGSA-
DQP accepts queries in a subset of OQL (that is very close to simple SQL) and supports relational databases, whereas
XMAP was initially designed for XPath queries over XML databases. In our system, this language mismatch has
been addressed through the development of a mapping between a subset of XPath over the XML representation of the
relational schemas into OQL. Our approach is limited, but it has proved sufficient for our environment.

This remainder of this paper is structured as follows. Section 2 discusses the motivation for the development of this
prototype. Its main independent components, namely OGSA-DQP and XMAP are presented in Section 3. Section 4
deals with the architecture, the design decisions and the implementation details. Section 5 presents some experiments
that aim at providing useful insight into the actual behavior of the system, and the overheads incurred by the hybrid
architecture. Section 6 discusses the related work and Section 7 summarises the paper.

2 Motivation
Our experience with OGSA-DQP is that, although it provides the key functionality of executing distributed queries
transparently to the user [4], its applicability is restricted because of two main reasons. First, the service oriented
architecture and the SOAP-based communication protocol incur a high overhead. This drawback has been partly
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ameliorated through the development of adaptive techniques [14]. Second, as the users typically do not know enough
information about the semantics of the data in the autonomous, third-party resources to which they are provided
access, they find it difficult to formulate semantically correct queries that combine data from multiple sources. Several
solutions may exist for the second problem. Our approach, which is the topic of this paper, is to make the following
option available to the users: instead of writing a query across multiple databases to compose a query that refers to a
single database, and the system, through the XMAP algorithm that has been integrated, to return equivalent queries that
refer to data stored to other databases, and subsequently, to execute them automatically. Without such functionality
the user would be forced first to understand the semantics of the data in all data sources, and then to compose a union
query, whereas now a query to a single database is sufficient to trigger the query reformulation mechanism, which
automatically constructs and evaluates the semantically equivalent queries.

3 Background
Before presenting the architecture of our prototype, we briefly describe the two systems it integrates, namely OGSA-
DQP and XMAP.

3.1 The OGSA-DQP System
OGSA-DQP is an open source service-based Distributed Query Processor supporting the evaluation of queries over
collections of potentially remote data access and analysis services. OGSA-DQP uses data services provided by OGSA-
DAI to hide data source heterogeneities and ensure consistent access to data and metadata from any database resource.
An OGSA-DAI data service exposes data service resources, which wrap autonomous DBMSs. The version of OGSA-
DQP used in our prototype builds upon the Globus Toolkit 4 WSRF infrastructure [9].

OGSA-DQP provides two types of services, Grid Distributed Query Services (GDQSs) and Query Evaluation Ser-
vices (QESs). The former are visible to end users, accept queries from them, construct and optimise the corresponding
query plans and coordinate the query execution. Query evaluation services are hidden from the users, implement the
query engine, interact with other services (such as OGSA-DAI services, ordinary Web Services and other evaluators),
and are responsible for the execution of the query plans created by a GDQS. The interactions and functionality of
OGSA-DQP services are described in detail in [3], whereas a more complete list of publications is provided at the
download site.

The operations a data service resource can perform are called activities. For each activity to be called, there
needs to be a separate, dedicated activity element in the perform document received by the data service resource.
Activities are also the extensibility point of OGSA-DAI and DQP, i.e., additional functionalities are implemented as
new activities.

3.2 The XMAP framework
The primary design goal of the XMAP framework is to develop a decentralized network of semantically related
schemas that enables the formulation of queries over heterogeneous, distributed data sources. The XMAP framework
abstracts from the underlying network infrastructure, it is modeled as a number of various autonomous nodes (that
can be also referred to as sites, sources, peers, etc) which hold information, and which are linked to other nodes by
means of mappings. Therefore, it can be extended at information nodes in any networked environment, and, as thus it
can be seen as a set of network nodes connected to the Internet. More precisely, XMAP is composed of a collection
N of nodes which are logically bound to XML data sources. That is, each data source Dn is represented by exactly
one node n and, conversely, each node has access to a single data source, named local data source. Naturally, a local
schema Sn is associated to this data source Dn. Data sources employ the XML data model and each source defines its
own XML Schema. Each node also holds a collection of mappings Mn from its local schema to other foreign schemas.
Finally, a node knows a list (also named partial view or, simply, view) of other nodes (called neighbors). These nodes
are connected to each other through declarative mappings rules.

The XMAP integration [8] model is based on schema mappings to translate queries between different schemas.
The goal of a schema mapping is to capture structural as well as terminological correspondences between schemas.
Thus, in [8] , we propose a decentralized approach inspired by [18] where the mapping rules are established directly
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among source schemas without relying on a central mediator or a hierarchy of mediators. The specification of map-
pings is thus flexible and scalable: each source schema is directly connected to only a small number of other schemas.
However, it remains reachable from all other schemas that belong to its transitive closure. In other words, the sys-
tem supports two different kinds of mapping to connect schemas semantically: point-to-point mappings and transitive
mappings. In transitive mappings, data sources are related through one or more “mediator schemas”.

We address structural heterogeneity among XML data sources by associating paths in different schemas. Mappings
are specified as path expressions that relate a specific element or attribute (together with its path) in the source schema
to related elements or attributes in the destination schema. The mapping rules are specified in XML documents called
XMAP documents. Each source schema in the framework is associated to an XMAP document containing all the
mapping rules related to it.

The key issue of the XMAP framework is the XPath reformulation algorithm: when a query is posed over the
schema of a node, the system will utilize data from any node that is transitively connected by semantic mappings,
by chaining mappings, and reformulate the given query, expanding and translating it into appropriate queries over
semantically related nodes. Every time the reformulation reaches a node that stores no redundant data, the appropriate
query is posed on that node, and additional answers may be found. Therefore, beyond basic processing and communi-
cation facilities (exchanging messages with other nodes), nodes are supposed to be able to execute the XMAP query
reformulation algorithm and to answer locally the queries they receive. We performed an extensive set of experiments
to evaluate the performance and effectiveness of our approach. From such experiments we can realize that XMAP ad-
dresses the scalability concern scaling well with the number of participating nodes and guaranteeing quick production
of reformulations, within few milliseconds even for the most demanding configurations.

In our architecture the reformulation algorithm has been re-engineered as a Web Service, referred to as XMAPAl-
gorithm Web Service (XMAP-WS).

4 System Architecture

4.1 The hybrid model
A comprehensive data integration architecture needs to combine both the query reformulation and the query process-
ing services. Our system offers a wrapper/mediator-based approach to integrate data sources, and adopts the XMAP
decentralized mediator approach to handle semantic heterogeneity over data sources, whereas syntactic heterogene-
ity is hidden behind OGSA-DAI wrappers. More precisely, the proposed framework is characterized by three core
components: a query reformulator engine, a distributed query processor, and a wrapper module (see Figure 1).

The very general behavior of the developed system can be briefly outlined as follows. XMAP plays the role of
the reformulation engine, OGSA-DQP is the distributed query processor with GDQS playing the role od mediator,
whereas wrappers are provided by OGSA-DAI. The user query is handled by the reformulator engine that through
the XMAP query reformulation algorithm produces zero, one or more reformulations of the original query. All the
obtained reformulations (included the original query) are then processed by the DQP module that partitions each
of such queries in several sub-queries to be executed in parallel. Then, each produced sub-query execution plan is
processed by OGSA-DQP’s QESs that access data sources through OGSA-DAI data service resources and produce
the query result.

The model above can be implemented in several ways. Three main options include: (i) to incorporate the refor-
mulation algorithm within the DQP module; (ii) to make the reformulation algorithm a stand-alone module that is
called from within DQP; and (iii) to make the reformulation algorithm a stand-alone module that is called from a third
module that acts as the bridge between DQP and the former module. The basic advantage of the first option is that the
overheads due to inter-module communication are minimized at the expense of generality. In the third option, both
DQP and query reformulation algorithms can be replaced and modified easily, i.e., the design is more generic, but the
system becomes less efficient. In our system, we followed the second option that is the middle solution, as shown in
Figure 2. In our architecture, the query reformulation algorithm is exposed as a completely independent service, so that
any such algorithm can be plugged in and out of the system. However, this service is called from within OGSA-DQP,
which has been extended accordingly, and as such, if we want to replace OGSA-DQP with another DQP system, we
need to re-implement these extensions.

After having exposed the XMAP framework as a stand-alone WS, reusing it for other examples and in other
settings does not pose significant problems. However, in order to integrate it with OGSA-DQP as in our case, two
main technical issues had to be overcome. The first was to adhere to OGSA-DAI design principles, which entailed
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Figure 1: System Model.
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Figure 2: The high-level architecture. The arrows denote (remote) service calls.

that the additional data integration functionality must be implemented in the form of an OGSA-DAI activity with all
its complexities. The second main technical challenge stemmed from the fact that a solution to the language mismatch
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<?xml version="1.0" encoding="UTF-8"?> ...
<xsd:schema
<xsd:complexType name="XPathMappingType">
<xsd:complexContent>
<xsd:extension base="gds:ActivityType">

<xsd:sequence>
<xsd:element name="expression"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType"/>

</xsd:complexContent>
</xsd:complexType>

</xsd:element>
<xsd:element name="ServiceLocation"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityInputType"/>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="webRowSetStream"

minOccurs="1" maxOccurs="1">
<xsd:complexType mixed="true">
<xsd:complexContent>
<xsd:extension base="gds:ActivityOutputType"/>
</xsd:complexContent>

</xsd:complexType>
</xsd:element>
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="XPathMappingStatement"
type="gds:XPathMappingType"
substitutionGroup="gds:activity"/>

</xsd:schema>

Figure 3: The schema of the new activity.

<activityConfiguration> ...
<activityMap>
<activity name="XPathMappingStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.XPathMappingActivity"
schema="xpath_mapping_statement.xsd"/>

<activity name="oqlQueryStatement"
implementation=
"uk.org.ogsadai.dqp.gdqs.OQLQueryStatementActivity"
schema="oql_query_statement.xsd"/>

...
</activityMap>
</activityConfiguration>

Figure 4: Fragment of the activity configuration document of an OGSA-DQP data service resource.

problem had to be developed. Both issues are discussed in the next subsection.

4.2 System Functionalities
The main features, that provide added value to stand-alone OGSA-DQP are query reformulation and query transfor-
mation that we have implemented in a new activity, called XPathMappingActivity. The schema of the new activity is
shown in Figure 3. The expression element contains the submitted XPath query, whereas ServiceLocation contains the
address of the web service to be contacted for the actual query reformulation, according to the architecture discussed
previously. As such, each OGSA-DQP data service resource supports two main operations, one for OQL queries and
one for XPath queries that are reformulated and translated into OQL (see Figure 4).

As mentioned before, query reformulation is enabled with the help of the XMAP-WS, the descriptor of which is
shown in Figure 5. However, the reformulated queries returned by the XMAP-WS cannot be evaluated in their current
form by OGSA-DQP, as the latter accepts only OQL queries. Thus a query transformation step is required. The policy
for that is as follows. In general, the set of meaningful XPath queries over the XML representation of the schema of
relational databases supported by OGSA-DQP fits into the following template:
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<?xml version="1.0" encoding="UTF-8"?> <deployment
xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<globalConfiguration>

<parameter name="adminPassword" value="admin"/>...
</globalConfiguration>...
<service name="XMAPAlgorithmService" provider="java:RPC">

<parameter name="className" value="xmap.XMAPAlgorithm"/>
<parameter name="allowedMethods" value="*"/>

</service>...
</deployment>

Figure 5: Fragment of the WSDD of the XMAP-WS.

/database A[predicate A]/table A[predicate B]/column A

where
predicate A ::= table pred A[column pred A = value pred A], and

predicate B ::= column pred B = value pred B

As such, the mapping to the select, from, where clauses of OQL is straightforward. column A defines
the select attribute, whereas table A, table pred A populate the from clause. If column pred A=value pred A,
column pred B=value pred B exist, they go into the where field.

The approach above is simple but effective; nevertheless two important observations are: firstly, it does not benefit
from the full expressiveness of the XPath queries supported by the XMAP framework, and secondly, it requires the join
conditions between tables table A, table pred A to be inserted in a post-processing step. Such a transformation falls
in an active research area (e.g., [11, 5] ), and is implemented as an additional component within the query compiler.

The interactions of the services are as follows (see also Figure 2):

1. The user contacts the GDQS through a client application and requests a view of the schema for each database
he/she is interested in. The schema is returned in XML with the elements database, table and column forming
an hierarchy. At this point, there is no assumption that the user has an a priori knowledge of the semantics of
this and the semantically-related databases.

2. Based on the retrieved schema, the user composes an XPath query, which is sent to the GDQS, and not directly
to the corresponding database service, following the OGSA-DQP approach. An example of an XPath query is
“/database[@dbname=IEEE]/ table[@name=Publications]/column[@name=author]”, or, in a simpler form,
/IEEE/Publications/author.

3. GDQS contacts a XMAP-WS service, which encapsulates the XMAP algorithm.

4. The XMAP-WS retrieves the locally stored mapping schema, which contains the mapping information that links
the paths in the submitted query with paths referring to other databases. It returns a set of n queries that all
return results that are semantically similar to those of the initial query.

5. For each of the results of the previous step, the GDQS transforms the XPath expression in OQL, parses, opti-
mises, schedules and compiles a query execution plan. The resulting query execution plan is sent to the corre-
sponding QES, which returns the results asynchronously, after contacting the local database via an OGSA-DAI
service.

In order to make clearer the concepts introduced, in the following we describe an example of use of the overall
prototype.

4.3 An Example
Suppose that several publishers (such as IEEE and ACM) make their databases accessible from anywhere, and when
a user wants to retrieve the publications of a specific author in a certain year it is sufficient to submit a query only
to one of the databases, with the system being responsible for querying the remaining databases. Or, when querying
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Site S1

Site S2

author

paper

id field

name

title year

info

code

first_name last_name

kind

researcher professor

school publication

title year

field paper

paper
paper_id  title  year

author
id  field  name

info
code  first_name  last_name  kind  id

researcher
info_id  researcher_id  school

publication
researcher_id  title  year

professor
info_id  field  paper

Figure 6: The example schemas.

a museum database for artifacts of a specific artist, the system is able to return similar results from other museum
databases as well. Supporting scenarios like that, coupled with the emergence of Grid technologies, have motivated
the architecture and the system of this paper.

Considering the publisher example, we used a modified real-world data set to validate our prototype, the DB-
Research data set that has been created for the Piazza system [18]2. The data set is based on data available on web
sites concerning research in the database field. It includes the schemas corresponding to the structure and terminology
of 19 such web sites (such as DBLP, CiteSeer, ACM Digital Library, and a few university sites). On the basis of these
schemas, we have defined XMAP mappings between the schemas that are semantically similar. More precisely, for
each source schema we have defined mapping rules toward, on average, three other source schemas.

Figure 6 shows some of the database schemas in the considered data set. The figure presents two self-explanatory
views: one hierarchical (for native XML databases), and one tabular (for object-relational DBMSs). In OGSA-DQP,
the table schemas are retrieved and exposed in the form of XML documents. We exploit such representation of
database schemas in order to integrate XMAP within the OGSA-DQP. In fact, users can have a view of the XML
representation of relational schemas, so instead of translating the tabular view in a XML one, they can directly query
the XML representation by using the XPath query language.

Examples of semantic mappings among the databases are illustrated in Figure 7: here, the column “title” of the
table “paper” of the database “ACM” is mapped to the column “paper” of the table “proceedings” of the database
“DBLP”. The latter is mapped to the column “article” of the “journal” table of “IEEE” data source. This information
resides in the mapping document associated with the XMAP Web Service. Note that it is not necessary to map the
ACM to the IEEE database directly. The XMAP mappings need to capture the semantic relationships between the data
fields in different databases , including the primary and foreign keys. This can be done as shown in Figures 8, 9.

Let us suppose a user wants to find the title of the paper published in the year 2000. To this aim the following
tasks are performed:

1. The user contacts the GDQS and requests a view of the schema of the ACM database, which has a table called

2The usage of this data set has been kindly authorized by Igor Tatarinov.
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Figure 7: Example of mappings.

<Mapping>
<sourceSchema>ACM</sourceSchema>
<Rule cardinality="Mapping1-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/title</sourcePath>
<destinationPath>/dblp/proceedings/paper</destinationPath>

</Rule>
<Rule cardinality="Mapping1-1">
<destinationSchema>dblp</destinationSchema>
<sourcePath>/acm/paper/year</sourcePath>
<destinationPath>/dblp/proceedings/year</destinationPath>

</Rule>...
</Mapping>

Figure 8: Fragment of the ACM XMAP document.

<Mapping>
<sourceSchema>DBLP</sourceSchema>
<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/paper</sourcePath>
<destinationPath>/ieee/journal/article</destinationPath>

</Rule>
<Rule cardinality="Mapping1-1">
<destinationSchema>ieee</destinationSchema>
<sourcePath>/dblp/proceedings/year</sourcePath>
<destinationPath>/ieee/journal/year</destinationPath>

</Rule>...
</Mapping>

Figure 9: Fragment of the DBLP XMAP document.

“paper”, with columns “year” and “title”.
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#T QRT XRT Overall OH (%)
2 1485(18.6) 2111(123.3) 3688(139.1) 91.8(2.49%)
4 2727(15.5) 1971(5.1) 4785(16.9) 86.2(1.8%)
8 5248(96.8) 2045(15) 7380(105.6) 86.6(1.18%)
16 11256(1185)) 2034(1.58) 13377(1185) 86.6(0.64%)

Table 1: Response times (in msecs) and overheads, when the calls to the GDQS and XMAP services are local, and the
average size of results per query is 10.

#T QRT XRT Overall OH (%)
2 1726(102.8) 2056(17.8) 3872(123) 90.2(2.33%)
4 2948(130.8) 1977(2.65) 5010(132.2) 85.4(1.7%)
8 5613(129) 2031 (7.2) 7730 (123.7) 86.6(1.12%)
16 11670(566) 2964(16.5) 13824(559) 89.2(0.65%)

Table 2: Response times (in msecs) and overheads, when the calls to the GDQS and XMAP services are local, and the
average size of results per query is 100.

#T QRT XRT Overall OH (%)
2 9139(398) 6177(91.3) 16390(537) 1074(6.55%)
4 17970(738) 5971(171) 25032(1219) 1092(4.36%)
8 34291(1075) 6133(192) 42233(1111) 1809(4.29%)
16 72300(2288) 6269(103) 79787(2338) 1218(1.53%)

Table 3: Response times (in msecs) and overheads, when the calls to the GDQS and XMAP services are remote, and
the average size of results per query is 10.

#T QRT XRT Overall OH (%)
2 9155(191) 5956(55) 16069(146) 958(5.96%)
4 18308(617) 5947(103) 25344(755) 1089(4.3%)
8 38269(656) 6247(212) 46487(726) 1971(4.24%)
16 75266(1495) 6177(89.3) 82609(1476) 1166(1.41%)

Table 4: Response times (in msecs) and overheads, when the calls to the GDQS and XMAP services are remote, and
the average size of results per query is 100.

2. Based on the retrieved schema, the user composes the following XPath query formulated over the ACM schema:
QACM = /acm/paper[year = ”2000”]/title, which is sent to the GDQS.

3. GDQS contacts a XMAP-WS service, which encapsulates the XMAP algorithm.

4. The XMAP-WS service retrieves the locally stored ACM mapping schema (see Figure 8). More specifically,
the schema ACM is connected to the schema DBLP and thus we can rewrite the query QACM over the
schema DBLP obtaining the query QDBLP = /dblp/proceedings[year = ”2000”]/paper. Then exploit-
ing the semantic mappings concerning the schema DBLP (see Figure 9) we obtain the query QIEEE =
/ieee/journal[year = ”2000”]/article.

5. For each of the results of the previous step, the GDQS transforms the XPath expressions in OQL producing the
following corresponding OQL queries: select a.title from a in paper where year="2000";
select d.paper from d in proceedings where year="2000"; and select i.article
from journal where year="200". OGSA-DQP automatically detects the remote databases for each
query; in this case the ACM database for the first one, the DBLP for the second one, and the IEEE for the
third.

5 Experimental Evaluation
The experiments presented at this section aim at providing useful insights into the behavior of the system, focusing on
the overhead added because of the hybrid architecture presented previously. For the behavior of individual components
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Figure 10: Response times when the service calls are remote and the average size of results per query is 100.

the interested reader may refer to works such as [10, 8].
In more detail, we are interested in measuring the overhead incurred by the integrated architecture; in establishing

whether there is any varying property of the input queries that the overhead depends on; and finally, in establishing
whether the overheads still allow query evaluation to benefit from parallelism as it is the case with stand-alone OGSA-
DQP [16]. In the experiment, the DQP server was a Fedore Core 4 machine with 1GB memory size and CPU Intel
Pentium 4 at 3.20GHz. The metrics that are of interest in the experiments include: (i) the number of reformulated and
transformed queries to be executed (#T); (ii) the response time for executing the complete set of these queries (QRT);
(iii) the response time to call the XMAP Web Service and retrieve for a given XPath query the set of its equivalent
queries along with their OQL transformations (XRT); (iv) the overall response time at the client, which includes QRT
and XRT, aling with any overhead incurred by their linking; and (v) the overhead, which is the difference of the overall
response time with the sum of QRT and XRT (OH).

Tables 1 and 2 present the measurements taken when all service calls are local (i.e., there is no network communi-
cation cost involved) and the average result size of each executed query is 10 and 100 tuples, respectively. The times in
columns “QRT”, “XRT”, and “overall” are the average times of five runs in milliseconds, and, inside the parentheses,
the standard deviation is shown. All the queries are simple Select-From-Where expressions scanning a single table
and they retrieve from store 10-100 entries each time. The semantic mappings reside on a single XMAP Web Service.
The overhead column “OH” shows the absolute overhead in milliseconds. Inside the parentheses is its percentage in
the overall response time. From the tables we can see that the QRT cost increases linearly with the number of executed
queries (as expected), whereas both the cost to reformulate and transform queries, and the overhead remain stable. The
XRT is around 2 seconds, and the overhead is less than a tenth of a second. Moreover, the overhead incurred can be
deemed as negligible, as even when there are just two small queries (i.e., retrieving only 10 tuples each), the overhead
does not exceed the 2.5 %.

Similar observations can be made when the service calls are remote, as shown in Tables 3 and 4. In this experiment
the client resides in continental Europe (and in Greece in particular), where are the other services are on Grid nodes in
Manchester in the UK. Due to the network cost, the response times are higher, but the pattern of the previous setting
is the same: linear increase of QRT and overall time, and stable XRT and overhead. The former is 6 seconds while the
latter is 1 second, approximately. This is better illustrated in Figure 10, as well.

The conclusions that can be drawn are twofold: firstly, there is no single property of the input queries (such as
the result size or the number of database entries retrieved) that the overhead depends on. The cost to reformulate and
translate queries, and the system overhead are both stable, which entails that if we are able to estimate (with the help
of a cost model, or based on previous experience) the execution time of queries, we can find the overall execution
time by adding to the query execution cost the flat overhead. Secondly, the overheads still allow query evaluation
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to benefit from parallelism. We can see from the values of the tables that, apart of the extreme case that there is a
very small number of queries and the service calls are local, the dominant cost is the QRT. This is important, as it
is the only cost that can be reduced by employing parallel execution techniques. In other words, after the extensions
added to OGSA-DQP to integrate the query reformulation functionality, it is still the case that parallelism can yield
performance benefits.

6 Related Work
To the best of our knowledge, there are only few works designed to provide schema-integration in Grids. The most
notable ones are Hyper [7] and GDMS [6]. Both systems are based on an approach similar to ours, i.e., to build
data integration services by extending the reference implementation of OGSA-DAI. The Grid Data Mediation Service
(GDMS) is part of the GridMiner project [1] and uses a wrapper/mediator approach based on a global schema. GDMS
presents heterogeneous, distributed data sources as one logical virtual data source in the form of an OGSA-DAI service.
The main difference from our work is that it relies on the existence of a global schema, which is not that realistic in
Grids. Hyper is a framework that integrates relational data in P2P systems built on Grid infrastructures. As in other
P2P integration systems, the integration is achieved without using any hierarchical structure for establishing mappings
among the autonomous peers. In that framework, the authors use a simple relational language for expressing both the
schemas and the mappings. Our integration model follows an approach not based on a hierarchical structure as well,
however it focuses on XML data sources and is based on schema-mappings that associate paths in different schemas.
Finally, semantic mapping across relational databases coupled with a global-as-view approach is investigated in the
context of the SASF project [2]. The notion of peer to peer semantic mappings appears also in a non-grid setting in
[18]. An earlier version of this work is described in [15].

7 Summary
The contribution of this work is the proposal of a unifying architecture and of an approach that combines a semantic
data integration methodology with existing services for querying grid-enabled distributed databases. This architec-
ture is used for providing an enhanced, data integration-enabled service middleware for data grids. The architecture
employs a wrapper-mediator approach for distributed query processing across autonomous databases exposed as Grid
resources, and a decentralized model for establishing semantic connections between such databases. The instantiation
of this architecture is service-based and builds upon two existing artefacts, namely OGSA-DQP for distributed query
processing, and XMAP for semantic query reformulation. The paper, apart from describing the generic model and
the system developed, presents evaluation results that provide insights into the actual behavior of the prototype. The
results show that the additional cost is both stable and relatively low, which renders the practical application of the
proposal appealing.

This work can be extended in various ways. Directions for future work include larger scale experiments both
in terms of the data volume size and the number of the machines used, experiments with simultaneous queries, and
evaluation of queries in XPath, if this functionality becomes available from OGSA-DAI/DQP.
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