
Managed by

Scalable Peer-Group Services in
Grids

Vladimir Vlassov (KTH), Cosmin Arad (SICS), Seif Haridi (SICS)

vladv@kth.se, cosmin@sics.se, seif@sics.se

Bridging Global Computing with Grid (BIGG), Nov 2006

2

Outline

Grid and Distributed Systems Research at KTH, SICS, Stockholm,
Sweden

– Democratization of the Grid

– Self-Management for Large-Scale Distributed Systems

– GODS: Global Observatory for Distributed Systems

Scalable Peer-Group Services in Grids

– Use of P2P to improve scalability, availability and performance
of data services – Peer Group (Data) Service

– Use cases (examples)

• A P2P (overlay) replica management service

• A P2P distributed file system (KESO)

• A P2P resource discovery

• A P2P distributed back-up storage (MyriadStore)

• A P2P content delivery network (DOH)

3

Democratization of the Grid

EU STREP Grid4All: Self-* Grid: Dynamic Virtual Organizations for
Schools, Families, and All

– Democratization of the Grid for ordinary people, small
organizations, SMEs, families and schools

• IT-inexperienced users

• Dynamicity: highly dynamic Grids for highly dynamic VOs

• Focus on a dynamic and semi-open infrastructure where
resources are provided mainly by the community itself but also,
upon need by commercial utility-computing centers

– Incorporate P2P techniques and semantics driven approaches
in Grid architecture

• to provide self-management, scalability, dynamicity and
heterogeneity support

– Self-management

• Component-based, loopback control

• P2P techniques to manage collections of …

4

Self-Management for Distributed Systems

Motivation for self-management
– High complexity, large-scale
– High dynamicity

– A combination of the above
STREP SELFMAN: Self Management for Large-Scale Distributed

Systems based on Structured Overlay Networks and Components
– Goal: a service architecture that is a framework for building

large-scale self-managing distributed applications.
– Objectives for the self-management abilities:

• Self configuration: reconfigure itself during execution;

• Self healing: continued execution (service, SLA) under failures;
• Self tuning: load balancing and overload management;
• Self protection:

– Feedback loops throughout the system
• the detection of an anomaly
• the calculation of a correction

• the application of the correction

– System behavior should converge

5

GODS: Global Observatory for Distributed Systems

Why GODS?

To set the bar for distributed applications development:

– Deployment in “real-world” testbed

– Tracing/Debugging algorithms

– Performance tuning

– Quality Assurance

Uses for Grids

– to study dynamicity / scalability / availability in Grids

– to evaluate scalable group services

The Cathedral and the Bazaar, by Eric S. Raymond:

– “Every good work of software starts by scratching a developer's
personal itch”

– “To solve an interesting problem, start by finding a problem that is
interesting to you”

– “Any tool should be useful in the expected way, but a truly great tool
lends itself to uses you never expected”

6

Uses of GODS

Expected uses

– Deployment and evaluation of
large-scale distributed

systems

– WAN emulation with ModelNet

• Topology

• Link latency

• Link bandwidth

• Link packet loss

– Control and Monitorization

– Collecting and aggregating

statistics

Unexpected uses

– Emulation of node arrivals,
leaves and failures (churn)

– Emulation of network
partitioning

– Dynamic change of link
properties

– Bandwidth consumption
measurements

– Statistical models, node
groups

– Automated experiments

7

Uses of GODS (cont’d)

More Unexpected Uses

– System performance tuning

– Collection of events for
visualization of execution

– Experiment recording + step-
by-step and backwards
replay for debugging

– Total-ordering of events

– Regression test suite for QA

– Benchmarking similar
systems

Bonus Features

– Evaluating real application
code

• Fix defects only once

• Account for various overhead

– Unmodified Java source code

• Smooth adoption by other

users

• Avoid potential bugs

– Global knowledge about
system state

• Compiled global statistics

– Reproducible experiments

8

An Overview of ModelNet

Several virtual nodes (app.
instances) run as processes on each
(edge) machine

Virtual node bound to one IP alias

VN traffic is routed to the core

The core implements WAN emulation

– Load virtual topology

description

– Each packet is virtually

routed through the topology
and delayed accordingly

– The core can scale with more
machines

Gb

Switch

100Mb

Switch

Edge

Nodes

ModelNet

Core

9

GODS Architecture

Topology module

ChurnOperations Partitioning

Automation moduleStatistics

Monitor

& Cache

Control Center

Visualizer (GUI)Topology

Operations

Churn

Stats Mon

Agent

VN1

Machine

VN2

slot

…

VNn

Topology

Operations

Churn

Stats Mon

Agent

VN1

Machine

VN2

slot

…

VNn

…

Partitioning Agent

ModelNet

Emulator

Database

application traffic

GODS control traffic
Bandwidth Agent

10

Application Interface

XML descriptor for:

– Callable operations (e.g. lookup, broadcast)

– Event notifications (e.g. send/receive msg)

– Watched variables (pushed stats)

– Readable variables (pulled stats)

For Java apps:

– JVM instrumentation by JVMTI and JMX

Explicit interface (library) for other languages

11

GORDS Summary

Offers

– Evaluation of large-scale
dynamic DS (P2P, Grids)

– System deployment and
management

– Real-world WAN emulation

– Churn emulation

– Network partitioning emulation

– BW consumption measurement

– Global knowledge about the

system

– Debugging/tracing of dist.
algorithms

– System performance tuning,
evaluation

Limitations

– Bound on accuracy of BW
consumption measurement
(lower bound on correlation
between events and packets
timestamps)

– Does not emulate NAT
environments

– Lengthy experiments:

• 2000 nodes + all pairs pings

• 1 ping/sec -> 46 days ����

• 50 pings/sec -> 1 day ����

• 500 pings/sec -> 2 hours ☺☺☺☺

12

Scalable Peer-Group Grid Services

Scalable Grid services as group services (overlay services) deployed
in a P2P network of containers

– A group service is provided by a peer group rather than by a
single peer

• Self-organizing, self-managing

– Higher throughput; higher availability

– Can be deployed on an overlay network – a P2P system of
containers

• On structured (name-based routing) overlays with DHT
functionality, i.e. decentralized lookup (index) service within a VO

• On unstructured (flooding) overlays, i.e. decentralized Grid
resource information service across orgs or within a VO

– A service is available while at least one peer is up and running

– Client-service binding: one to any

• Dynamic rebinding (allocation)

13

Scalable Group Grid Services (cont’d)

Scalable Grid services as group services (overlay services)

– Dynamicity: peers can join / leave / fail

– Exploit P2P self-organization and self-management

• Handover on leave and join

– Scalability and (high) availability

14

Scalable Data Services in Grids Using a P2P Middleware

Multiple access points; high availability and throughput; self-

management (comes from P2P)

Examples: Scalable Data Services based on the DKS P2P middleware

[http://dks.sics.se/]

– A P2P (overlay) replica management service

• Ant-based mechanism with stigmergy

– A P2P distributed file system (KESO)

– A P2P resource discovery

– A P2P distributed back-up storage (MyriadStore)

– A P2P content delivery network (DOH)

15

Example: Replica Management Framework

Components:

– Replica Location Service

(RLS)

• Based on DKS' DHT

– Replica Selection

(Placement) Component

• Uses “ants”

– Node Location Service (NLS)

• using GT4's WS MDS
Aggregator Framework

• Several instances running

– Data Consistency
Component

– Data Transfer Component

– Replica Usage Statistics
Component

16

Ant Mechanism for Replica Placement

Triggered when there
is a need to place a
new replica

– neither of

existing
replicas
fulfills QoS

requirements

Ants are sent to find
a place(s) for new
replica(s)

– sigmergy

17

Example: P2P File System

Keso is a distributed P2P file system built
using the DKS P2P middleware

– Decentralized, scalable, self-
organizing, secure

– Designed for real-world usage

– Can be mounted to a local file system

Organization:

– Files are split into blocks of equal size

– Blocks are referenced from a block list
in the inode

– Each block and each inode is stored in
DHT using a hash of its content

– Directory acts as a name/inode lookup
service

– All versions of files are kept

18

MyriadStore: A P2P Backup Storage

Basic functionality:

– Backup

– Retrieval

– Browsing of backup data

Organization:

– Meta-data is stored in the DHT of DKS

– Actual data are split into blocks and stored directly to the nodes local
file systems

– All data items are encrypted before being stored remotely

– All nodes (users) have reputation which is a global numeric value
maintained by all other nodes

– A higher reputation provides a longer grace period

Different schemas of trading for storage space

– Nodes exchange equal amount of disk space

– Contracts established between partners

19

Data in MyriadStore

20

Dynamic Grids

Management in Dynamic Grids

– A dynamic collection of resources

– Resources can be dynamically added / removed

– Resource can become unavailable

– VO members (both providers and consumers) can dynamically
join / leave the VO

21

Example: VOFS: VO-aware Distributed File System

VOFS is a P2P system that aggregates data objects (files and
directories) from different administrative domains in a virtual DFS
similar to conventional NFS with standard POSIX file API

– Data objects (files, directories, disk space) are exposed to
VOFS

• Stay on place; logically linked in VOFS

– Spans multiple administrative domains
– Hides heterogeneity of aggregated file systems
– Illusion of an ordinary DFS, e.g. NFS

– Can be mounted to a local file system
• Standard POSIX file API

• Applications, existing file clients, e.g. Windows Explorer

– Metadata (index)
• Centralized or DHT

• Directory tree – traditional in DFS

22

VOFS (cont’d)

VOFS Security: based on (similar to) GT4 Community Authorization

Service (CAS)

– Single-sign-on; role-based

– Mutual authentication with certificates; credential delegation

– Policy-based authorization

• VO as a whole

• User within VO

• User on the server

23

Conclusions

Peer-Group Services in Grids

– Deployed on an overlay (P2P) network

– Multi access point

– The service is available while at least one peer can provide a

service

– Also allow integration (sharing) of resources

Use of P2P for building group Grid services opens great opportunity
for improving availability, throughput and integration

