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B. Haverkort et al. (Univ. of Twente, NL);
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J. Hillston et al. (Univ. of Edinburg, UK);
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The focus on GC and SOC is the subject of cooperative work in the
context of the EU Projects

AGILE and SENSORIA

Many thanks to:
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J. P. Katoen (Univ. Aachen)
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M. Massink (CNR/ISTI, Pisa)
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Background - Formal Methods

“All engineering disciplines make progress by employing
mathematically based notations and methods. Research on ‘formal
methods’ follows this model and attempts to identify and develop
mathematical approaches that can contribute to the task of creating
computer systems”

[C. Jones 2000]

Attempt to provide the (software) engineer with “concepts and
techniques as thinking tools, which are clean, adequate, and
convenient, to support him (or her) in describing, reasoning about,
and constructing complex software and hardware systems”

[W. Thomas 2000]

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 5 / 28



Background - Formal Methods

“All engineering disciplines make progress by employing
mathematically based notations and methods. Research on ‘formal
methods’ follows this model and attempts to identify and develop
mathematical approaches that can contribute to the task of creating
computer systems”

[C. Jones 2000]

Attempt to provide the (software) engineer with “concepts and
techniques as thinking tools, which are clean, adequate, and
convenient, to support him (or her) in describing, reasoning about,
and constructing complex software and hardware systems”

[W. Thomas 2000]

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 5 / 28



Background - Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.
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Background - Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1030), e.g.

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Microsoft SLAM Project)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...
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Background - Success stories

Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas,
for example, driver verification we’re building tools that can do actual
proof about the software and how it works in order to guarantee the
reliability.

Bill Gates, April 18, 2002.
Keynote address at WinHEC 2002
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Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages,

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages,

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages,

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages,

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages,

e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages, e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Background - Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Process Calculi

with solid formal semantics and equipped with mathematical theories
for sound model manipulation (e.g. state-space minimization software
tools)

High level (non-)functional requirement specification languages, e.g.

Timed/Probabilistic/Stochastic/Security-Oriented Temporal Logics

based on the solid framework of Mathematical Logic and equipped
with efficient decision procedures (e.g. stochastic model-checkers)

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 9 / 28



Challenges

Rigorous modeling of the behaviour of systems characterized by

Parallelism
Distribution
Distribution awareness
Mobility
Performance and Dependability
Security
...

while coping with partial knowledge and uncertainty
(e.g. due to size, e.g. on latency);

Rigorous reasoning about such models;
Automatic tool support for modeling and reasoning;

Access to modeling and reasoning via engineering notations and tools;
Link to implementation and deployment;

Scalability
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Challenges, Solutions & Opportunities: Rigorous modeling

Process (Algebra-like) Languages for modeling

Networks composed of different sites (distribution),
where

Processes are running;
Resources (including code) are stored.

Processes which can

upload resources to
download or read resources from
spawn processes (or move) to

remote (as well as local) sites (distribution awareness and mobility);
Resources which can be down-loaded using patter-matching
mechanisms (discovery, SLA);
Uncertainty on operation execution times and/or possible choices by
means of random variables and weights/probabilities (partial/approx.
knowledge, performance/dependability analysis)
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V
∆
= ((out(V )@north, rn).nil) +

((out(V )@south, rs).nil) +
((out(V )@east, re).nil) +
((out(V )@west, rw).nil)

Ojk
∆
= ((in(!X )@self, djk).Ojk) +

((in(!X )@self, ujk).(eval(X )@self, rjk).Ojk)

i11 ::ρ11 〈V 〉 || (||
1 ≤ j ≤ 3
1 ≤ k ≤ 3

ijk ::ρjk
Ojk)
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The probability is less then 0.2
that the infection develops (i.e.
the virus is running) at site i33
by time t, assuming that at time
0 the only site infected is (i.e.
the virus is stored at) i11.

In MObile Stochastic Temporal Logic(extension of CSL [Baier et al.]):

P≤0.2(¬V@i33 U<t V@i33)

... and by means of Automatic Stochastic Model-checking ...
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Challenges, Solutions & Opportunities: Automatic Analysis

Sample results

1 2 3 4 5 6 7 8 9 10

Time

H det. rate (d=10 u=1)
M det. rate (d=6 u=5)
L det. rate (d=1 u=10)
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Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9 that
value f is present at site i .

S

>0.9

(

〈f 〉@i

)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term,

the probability is greater than 0.9 that
value f is present at site i .

S

>0.9

(

〈f 〉@i

)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9

that
value f is present at site i .

S>0.9(

〈f 〉@i

)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9 that
value f is present at site i .

S>0.9(〈f 〉@i)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9 that
value f is present at site i .

S>0.9(〈f 〉@i)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9 that
value f is present at site i .

S>0.9(〈f 〉@i)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Logical characterization (and automatic verification) of

Steady State Probability measures

In the long term, the probability is greater than 0.9 that
value f is present at site i .

S>0.9(〈f 〉@i)

In the long term, the probability is smaller than 0.2 that
process P is running at site i

S<0.2(P@i)

P could be a malicious (or faulty) process: the formula would
characterize the average fraction of time the infection (or faulty
component) is active at site i .

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 20 / 28



Challenges, Solutions & Opportunities: Rigorous reasoning

Transient probability measures

The probability is at least 0.8 that the system is not down
at time t

P

>0.8

(

3t ¬ down

)

Instantaneous availability at time t.

More general path-based measures

The probability is less than 0.01 that the system goes down
within time t without having first raised an alarm signal

P

<0.01

(

¬alarm U<t down

)
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Nested measures

In equilibrium, the probability is at least 0.87, that
in at least 75% of the cases the system will have resumed within 500
time units

S

>0.87

(

P>0.75(

down U<500 ¬down

)

)

CTL as a special case

A ϕ ≡ P≥1(ϕ) E ϕ ≡ P>0(ϕ)

Functional and non functional issues of behaviour integrated in the
same description language
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same description language
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Challenges, Solutions & Opportunities:
Automatic Tool Support

For example

stochastic simulators

and (stochastic) mode-checkers

for state-transition models

specified for instance in (stochastic)
process-algebra(-like) languages and requirements characterized via
(stochastic) temporal logics.

Access from engineering notations and tools:

Translations from e.g. UML, BPEL4WS, GRID-Skeletons
to such languages and logics;

[e.g. EU-HIDE, EU-SENSORIA]

Link to implementation:

Model-checking of software programs
(automatic model extraction from real code)

[e.g. Java Pathfinder, NASA]
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Challenges, Open Issues: Scalability

Analysis techniques based on current explicit state-space methods
able to cope with sizes of the order of 107.

BUT

Novel techniques and technologies are being developed
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Challenges, (Open) Issues: Scalability

Distributed implementation of analysis tools,

e.g.

Parallelization of (stochastic) model-checking algorithms,

e.g.

of CTMC solution techniques

Using GRID architectures

State-space size of the order of 109 − 1010

e.g. [Kwiatkowska et al. 05]
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Challenges, (Open) Issues: Scalability

Specification driven use of Ordinary Differential Equations

Typical for studying issues like:

The fraction of components which are in a certain state,
as a function of time.

For systems with high total number of components
(i.e. thousands or more)

Examples:

Processor-Resources usage profiling
Warm attacks and sanitation profiling
Biochemical process analysis

GRID clusters on-line performability analysis (for efficient scheduling)

State-space size of the order of 1010.000

Fully automatic translation from SPA specification to system of ODE.

[Hillston et al. 05]
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General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency

(time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency

(time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency

(time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency

(time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency

(time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



General Open Issues

Improving SMC diagnostic feedback

counter-example generation, accuracy of result, etc.

From Very-Large to Infinite state systems (CTMC)

Continuous State Systems (CSDTMC)

e.g. sampling of real-valued signals

Time dependency (time-inhomogeneous stochastic models)

e.g. hardware components failure rate typically follows a bathtub curve

Modeling and analysis techniques capable of dealing both with
randomness and with non-determinism (MDP)

e.g. non-determinism generated from an interleaving approach to
modeling of parallelism

Run-time verification techniques complementing model-based
techniques

e.g. Program model-checking, Probabilistic testing

Spatial, stochastic logics for mobility

D. Latella (CNR/ISTI) FM4TGC BIGG 2006 27 / 28



Conclusion

“Software: the critical infrastructure within the
Critical Infrastructures”

[Theme of the
2nd National Software Summit hosted by
the Center for National Software Studies

Washington D.C. - May 10-12, 2004 ]

“[I]t is time for us, as a nation, to elevate software a
to matter of national policy [...]”
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