Modules for Service Component Architectures

José L Fiadeiro Antonia Lopes
Laura Bocchi

)
L University of

v Lelcester




Context

WPI

T1.1

An IST-FET Integrated Project SeptO5-Aug09

Software Engineering for
Service-Oriented Overlay Computers

The aim of SENSORIA is to develop a novel comprehensive approach to the
engineering of software systems for service-oriented overlay computers
where foundational theories, techniques and methods are fully integrated in
a pragmatic software engineering approach.

Provide support for service-oriented modelling at high levels of abstraction,

i.e. independently of the hosting middleware and hardware platforms, and
the languages in which services are programmed.

Develop a prototype language for service description and composition
including syntax and mathematical semantics.

900DIg@!Yd20g%9sadoTRoiIapel



What we are building on

2 Web-Services (Alonso, Benatallah, Casati, ...)
2 ORC (Misra)

2 Architectural modelling of mobile and distributed systems

& SCA - Service Component Architecture
(BEA, IBM, Interface21, IONA, Oracle, SAP, Siebel, Sybase)
“a specification that [...] aims to simplify the creation and integration of

business applications built using a Service Oriented Architecture’.

9009Ig@!Yd20g7psadoTRoilapely



Modelling in

SRML provides primitives for mod.elling composite services understood
as services whose business logic invows a number of interactions

among more elementary service componesas well the invocation of
services provided by external parties.

modelling+

programming

9009Ig@!Yd20g7psadoTRoilapely



Modelling in

SRML provides primitives for modelling composite services understood
as services whose business logic involves a number of interactions
among more elementary service components as well the invocation of
services provided by external parties.

Interactions are supported on the basis of service interfaces defined in
a way that is independent of the hardware platform, the operating
system, the hosting middleware and the programming language used to
implement the service.

The modelling primitives have a mathematical semantics that supports
analysis of correctness understood in terms of properties of stateful
interactions (not pre/post conditions) maintained with external parties
and service-level agreements.

900DIg@!Yd20g%9sadoTRoiIapel



A module in

A composite service is modelled as a module consisting of:

2 At most one Provides-interface, specified as a Business Protocol;
» A number of Reqguires-interfaces, specified as Business Protocols;
2 A number of Components, specified as Business Roles;

» Wires connecting them, specified as Interaction Protocols.

PROCUREMENT

Customer ‘ ’ Supplier

)

90D0Ig@!Yd20g7psadopoiiapel




A business protocol

the behaviour
of a
warehouse

BUSINESS PROTOCOL Warehouse is

PROCUREMENT
INTERACTIONS

r&s checké&lock
£ which:product, many:nat

P4 Reply:bool :>>mﬁhr¢>“

snd confirm

BEHAVIOUR

initially check&locksl?

check&lock<{! A check&lock.Reply
D alertDatel'! A alertDate.Interval=3 A alertDate.Ref="goods”

check&locké ! D alertDatel<? A alertDate.Ref="goods”
check&lock® D (check&lockv ? ensures confirmfl!)

check&lockv'? D (check&lock®™? exceptif confirm&!)

9009Ig@!Yd20g7psadoTRoilapely



A business protocol

the behaviour
of a

Py warehouse
BUSINESS PROTOCOL Warehouse 1s

PROCUREMENT

INTERACTIONS

r&s checké&lock
£ which:product, many:nat

M Reply . bOOl >Customer ¢ = ’

snd confirm

BEHAVIOUR

initially check&lock:s'?

check&lock!<! A check&lock.k
D alertDatell! A alertDate.)

the warehouse is
required to accept a
request for check&lock
at the start of a new
session

check&locké ! D alertDatel<?

check&lock® D (check&lockv'?
check&lockv'? D (check&lock™? ex

909DIg@1Yy220g7@sadoTpolIdpeld



A business protocol

the behaviour
of a
warehouse

BUSINESS PROTOCOL Warehouse is

PROCUREMENT

INTERACTIONS

r&s checké&lock
£ which:product, many:nat

@ Reply H bOOl >C“§:{r:‘°r ¢ = 0 Su:i:::ier

snd confirm

BEHAVIOUR
initially check&lock:l?

check&lock<{! A check&lock.Reply
D alertDatel!! A alertDate.Interval=3 A alertDate.Ref="goods”

check&locké | D
check&lock® DO (che
check&lockv'? D

when the warehouse issues a
positive reply to check&lock, it
sets an alertDate with an interval
of 3 days and reference “goods”

9090D1g@!Yy220g7psadoTpoilapel



A business protocol

the behaviour
of a
warehouse

BUSINESS PROTOCOL Warehouse is

PROCUREMENT

INTERACTIONS

r&s checké&lock
£ which:product, many:nat

@ Reply H bOOl >C“§:{r:‘°r ¢ = 0 Su:i:::ier

snd confirm

BEHAVIOUR
initially check&lock:l?

check&lock<{! A check&lock.Reply
D alertDatel!! A alertDate.Interval=3 A alertDate.Ref="goods”

check&locké ! D alertDatel<? A alertDate.Ref="goods”
check&lockz D
check&lockv'? O

the deadline associated with
check&lock is the reception of a
reply to an alertDate with
reference “goods”

9090D1g@!Yy220g7psadoTpoilapel



A business protocol

the behaviour
of a
warehouse

BUSINESS PROTOCOL Warehouse is

PROCUREMENT

INTERACTIONS

r&s checké&lock
£ which:product, many:nat

@ Reply H bOOl >C“§:{r:‘°r ¢ = 0 Su:i:::ier

snd confirm

BEHAVIOUR
initially check&lock:l?

check&lock<{! A check&lock.Reply
D alertDatel!! A alertDate.Interval=3 A alertDate.Ref="goods”

check&locké ! D alertDatel<? A alertDate.Ref="goods”
check&lock® D (check&lockv ? ensures confirmfl!)

check&lock/?

the pledge associated with
check&lock ensures that a
confirm is issued after a commit
to check&lock is received.

9090D1g@!Yy220g7psadoTpoilapel




A business protocol

the behaviour
of a
warehouse

BUSINESS PROTOCOL Warehouse is

PROCUREMENT

INTERACTIONS

r&s checké&lock
£ which:product, many:nat

@ Reply H bOOl >C“§:{r:‘°r ¢ = 0 Su:i:::ier

snd confirm

BEHAVIOUR
initially check&lock:l?

check&lock<{! A check&lock.Reply
D alertDatel!! A alertDate.Interval=3 A alertDate.Ref="goods”

check&locké ! D alertDatel<? A alertDate.Ref="goods”
check&lock® D (check&lockv ? ensures confirmfl!)

check&lockv'? D (check&lock®™? exceptif confirm&!)

a commit to check&lock
can be revoked any time
before a confirm is issued.

9090D1g@!Yy220g7psadoTpoilapel



The iconography of

A catalogue of Interaction Description Primitives:

interaction~ | The event of initiating interaction.

interaction>< | The reply-event of interaction

interactionz | The pledge associated with interaction.

The timeout of interaction, an event that signals that the
pledge is no longer guaranteed to hold.

interaction®”

interactionv" | The commit-event of interaction (the pledge is enforced).

interaction* | The cancel-event of interaction (the pledge is discarded).

A revoke-event for interaction, which means cancelling the

interaction v , , _ ) .
effects of interaction after having committed to it.

909DIg@!1Y220g753d0TR0IIDpEI 4



The iconography of

A catalogue of Interaction Description Primitives:

PartyS PartyR PartyS PartyR PartyS PartyR
A\ A\ A\
>
>4 >4 >4
5 5
5
v x s
‘\7\’:
T
__________________ _>

Interactions are durative / stateful

909DIg@1Yy220g7@sadoTpolIdpeld



The semantics of

A formal model and logic for reasoning about interactions are being
developed (by Joao Abreu):

Interactions are taken to be durative in the sense of involving a number
of correlated events;

Service behaviour is modelled in terms of doubly labelled transition
systems (states and transitions are labelled);

The logic is HUCTL developed at ISTI-CNR (Pisa), which subsumes both
ACTL and CTL;

Reasoning with yUCTL is supported by the model checker UMC.

900DIg@!Yd20g%9sadoTRoiIapel



A business role

BUSINESS ROLE Supplier is

INTERACTIONS PROCUREMENT —
Stock
ORCHESTRATION ';
local _ . = =
s:[0..8],1nStock:bool,which:product, ” 4> koo O sw ywareose
J 3 cs > SP:
much:money, timeoutQuote:bool Customer £ Supplier

initialisation s=0

termination s=8
transition Tquote

triggeredBy requestQuotefl?
guardedBy s=0

effects which’=requestQuote.which
A much’=how(which’)*1.2
A inStock’=false
A timeoutQuote’=false
A s'=1
sends requestQuotel«!
A requestQuote.cost=much’
A alertDate&!
A alertDate.Ref="quote”
A alertDate.Interval=7

900DIg@!Yd20g%9sadoTRoiIapel



A business role

BUSINESS ROLE Supplier is

PROCUREMENT
INTERACTIONS m
&

OREHESTRATION

local
s:[0..8],inStock:bool,which:product, =

much :money, timeoutQuote:bool QMWr¢>“ 3
initialisation s=0

WR:

-' SW Warehnust'

termination s=8
transition Tquote

triggeredBy requestQuotefl?
guardedBy s=0

effects which’'=re
A much’=how(
A inStock’'=fa._
A timeoutQuote’=
A s'=1

sends requestQuotel«!
A requestQuote.cost=much’
A alertDate&!
A alertDate.Ref="quote”
A alertDate.Interval=7

a requestQuote iS 0‘:’n'ly"
accepted in an initial
state (when s=0)

900DIg@!Yd20g%9sadoTRoiIapel



A business role

BUSINESS ROLE Supplier is

INTERACTIONS LS:
Stock
9

OREHESTRATION

local
s:[0..8],inStock:bool,which:product,

CR: %
mU-Ch H money 7 timeothuote H bOOl Customer ¢ Ccs '_

initialisation s=0

- SW Warchoust'

WR:

termination s=8

transition Tquote
triggeredBy requestQuotefl?
guardedBy s=0
effects which’=requestQuote.which
A much’=how(which’)*1.2
A inStock’'=r.
A timeoutQuote’™=
A s'=1 :

the value of much is set through a
synchronous invocation of how on
the requested product with a 20%
overhead

sends requestQuoted
A requestQuote.ct
A alertDate&!
A alertDate.Ref="quote”
A alertDate.Interval=7

909DDIg@IYy220g7psadopoliapel



A business role

BUSINESS ROLE Supplier is

PROCUREMENT
INTERACTIONS m
&

OREHESTRATION

local
s:[0..8],inStock:bool,which:product,

CR: N
muCh . money ’ timeothuote e bOOl Customer ¢ cs :

initialisation s=0

-' SW Warehnust'

WR:

termination s=8

transition Tquote
triggeredBy requestQuotefl?
guardedBy s=0

effects which’=requestQuote.which
A much’=how(which’)*1.2
A inStock’=false
A timeoutQuote’=false
A s'=1

sends requestQuotel«!
A requestQuote.co
A alertDate&!
A alertDate.Ref="quote”
A alertDate.Interval=7

areplytor eq“eStQthe
is issued

900DIg@!Yd20g%9sadoTRoiIapel



A business role

BUSINESS ROLE Supplier is

PROCUREMENT
INTERACTIONS m
eee 0

ORCHESTRATION

local

s:[0..8],inStock:bool,which:product, :>> d
CcS £
much :money, timeoutQuote :bool mmmr¢> L

initialisation s=0

termination s=8

transition Tquote
triggeredBy requestQuotefl?
guardedBy s=0
effects which’=requestQuote.which
A much’=how(which’)*1.2
A inStock’=false

A timeoutQuote’=false
A s'=1

with a duration of 7 days
and reference “quote”.

sends requestQuotel«!
A requestQuote. cost—m
A alertDatef!
A alertDate.Ref="quote”
A alertDate.Interval=7

900DIg@!Yd20g%9sadoTRoiIapel



An interaction protocol

INTERACTION PROTOCOL Customl is e
INTERACTIONS
ask S, (product,nat):bool Y
tll S,(product,nat)
tll S;(product,nat) >Cu§fr;er¢cs G o
rpl R, (product):nat
prf R,(product,nat)

COORDINATION
S:(p,n) = Ry(p)=n
S;(pP,n) 2 Ry(pP,R;(P)+n)
Ri(pP)Zn A S3(p,n) 2O R,(P,Ry(p)—N)
R;(p)<n O 7S5(p,n)

SP o SS O LS
Supplier Stock

ask checkStock S i R, rpl get
tll incStock S, Custom R, prf set
tll decStock Ss

909DIg@1Yy220g7@sadoTpolIdpeld



Modules as labelled graphs

90DDIg®@!Yy220gRsado7Ro.Iapely



Modules as labelled graphs

9090D1g@!Yy220g7psadoTpoilapel



Modules as labelled graphs

9090D1g@!Yy220g7psadoTpoilapel



Modules as labelled graphs

9090D1g@!Yy220g7psadoTpoilapel



The correctness property

The body of the module

90DDIg®@!Yy220gRsado7Ro.Iapely



The correctness property

Modules as judgements (clauses)

90DDIg®@!Yy220gRsado7Ro.Iapely



Fiadeiro&Lopes&Bocchi@BIGG06

=
tal
=
v
w
v
<




Fiadeiro&Lopes&Bocchi@BIGG06

=
tal
=
v
w
v
<




Fiadeiro&Lopes&Bocchi@BIGG06

=
tal
=
v
w
v
<




Fiadeiro&Lopes&Bocchi@BIGG06

=
tal
=
v
w
v
<




Assembly




Assembly




Fiadeiro&Lopes&Bocchi@BIGG06

=
e
S
(b
n
Y
<




Fiadeiro&Lopes&Bocchi@BIGG06

-
|

=
e
S
(b
n
Y
<




Fiadeiro&Lopes&Bocchi@BIGG06

-
o
=
7))
O
Q.
S
o
O




Fiadeiro&Lopes&Bocchi@BIGG06

C
2
»

o

<
=

G
U




Fiadeiro&Lopes&Bocchi@BIGG06

c
2
%

o

o
=

G
U




What else in

@ Also available:
2 (Small) Case Studies (including Telecom with TILAB)
2 SLA attributes and statements

» Deduction-based model of discovery using constraint-solving
techniques for SLA

» Configuration management, including sessions and persistency

» Abstraction of business roles from BPEL components

» Planned research:
» Operational semantics over core calculi
» Analysis using UMC and PEPA

» UML-notations

9090D1g@!Yy220g7psadoTpoilapel

» Model-transformation to SCA





